如圖,在四棱錐中,底面ABCD為矩形,PA⊥底面ABCD,M、N分別是AB、PC中點(diǎn).
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求證:AB⊥MN.
考點(diǎn):直線與平面垂直的性質(zhì),直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)欲證MN∥平面PAD,根據(jù)直線與平面平行的判定定理可知只需證MN與平面PAD內(nèi)一直線平行即可,設(shè)PD的中點(diǎn)為E,連接AE、NE,易證AMNE是平行四邊形,則MN∥AE,而AE?平面PAD,NM?平面PAD,滿足定理所需條件;(Ⅱ)欲證AB⊥MN,先證線面垂直即可得到AB⊥MN.
解答: 證明:(Ⅰ)取PD中點(diǎn)Q,連結(jié)AQ,NQ.
∵N是PC中點(diǎn),
NQ  
.
.
  
1
2
DC

又∵M(jìn)是AB中點(diǎn),AM 
.
.
  
1
2
DC

AM 
.
.
 NQ
,
∵四邊形AQNM是平行四邊形.
∴MN∥AQ.
∵M(jìn)N?平面PAD,AQ?平面PAD,
∴MN∥平面PAD.
(Ⅱ)∵PA⊥平面ABCD,∴PA⊥AB.
又∵底面ABCD為矩形,
∴AB⊥AD.
∴AB⊥平面PAD,
∴AB⊥AQ.
又∵AQ∥MN,
∴AB⊥MN.
點(diǎn)評:本題主要考查平面與平面垂直的判定,以及線面平行的判定,同時(shí)考查了空間想象能力和推理能力,以及轉(zhuǎn)化與劃歸的思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,且對任意的正整數(shù)m、n滿足am+n=am+an+2mn,求a2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人在相同的條件下各射靶10次,每次命中的環(huán)數(shù)分別是:
甲:8,6,7,8,6,5,9,10,4,7;
乙:6,7,7,8,6,7,8,7,9,5.
(1)分別求甲、乙兩人的平均數(shù);
(2)分別求出甲、乙兩人的方差;
(3)根據(jù)計(jì)算結(jié)果,估計(jì)兩人誰發(fā)揮的較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

合肥一中每年五月舉行校園微型博覽會,在會館入口處準(zhǔn)備了A,B,C三種形式的校長簽名紀(jì)念卡片供參觀同學(xué)抽。
(Ⅰ)若有大量紀(jì)念卡,其中20%的A卡,現(xiàn)抽取了5張,求其中A卡的張數(shù)X的分布列及其數(shù)學(xué)期望E(X);(注:在總體數(shù)量特別大時(shí),無放回抽樣可以近似看作有放回抽樣)
(Ⅱ)活動結(jié)束,剩余若干紀(jì)念卡,從中任意抽取1張紀(jì)念卡,得到A卡的概率是
3
7
,任意抽取2張卡,沒有B卡的概率是
1
4
,求證:任意抽取2張卡,至少得到1張A卡的概率不大于
5
7
,并指出余下的卡中哪種卡最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(Ⅰ)y=
2
3
x3+log2x;
(Ⅱ)y=xtan2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(a)=
sin(π-α)cos(2π-α)tan(-α-π)
sin(-π-α)

(Ⅰ)化簡f(a);
(Ⅱ)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(a)的值;
(Ⅲ)求f(
π
3
)+f(
3
)+f(
3
)+…+f(
2013π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a+bi(a、b∈R),
.
z
是z的共軛復(fù)數(shù),且
.
z
=(2+i)(3-i),則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=2,∠A=30°,∠B=45°,則S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
3
4
,α是第三象限角,則cosα=
 

查看答案和解析>>

同步練習(xí)冊答案