已知向量
m
=(2sin
x
2
,1),
n
=(cos
x
2
,1),設(shè)函數(shù)f(x)=
m
n
-1.
(1)求函數(shù)y=f(x)的值域;
(2)已知△ABC為銳角三角形,A為△ABC的內(nèi)角,若f(A)=
3
5
,求f(2A-
π
3
)的值.
(1)由f(x)=
m
n
-1,得f(x)=2sin
x
2
cos
x
2
+1-1=sinx,
所以y=f(x)的值域?yàn)閇-1,1];
(2)由已知得A為銳角,f(A)=sinA=
3
5
,
則cosA=
1-(
3
5
)2
=
4
5
,得sin2A=2sinAcosA=2×
3
5
×
4
5
=
24
25
,
cos2A=1-2sin2A=1-2×(
3
5
)2
=
7
25
,
所以f(2A-
π
3
)=sin(2A-
π
3
)=sin2Acos
π
3
-cos2Asin
π
3
=
24
25
×
1
2
-
7
25
×
3
2
=
24-7
3
50
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)選做一題,都做時(shí)按先做的題判分,都做不加分.
(1)已知向量
m
=(2sinx,cosx-sinx),
n
=(
3
cosx,cosx+sinx)
,函數(shù)f(x)=
m
n

①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若f(
A
2
)=2
且a2=bc,試判斷△ABC的形狀.
(2)已知銳角△ABC,sin(A+B)=
3
5
,sin(A-B)=
1
5

①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2sinx,1),
n
=(
3
cosx,2cos2x),函數(shù)f(x)=
m
n
-t.
(Ⅰ)若方程f(x)=0 在x∈[0,
π
2
]上有解,求t 的取值范圍;
(Ⅱ)在△ABC 中,a,b,c分別是A,B,C 所對(duì)的邊,當(dāng)t=3 且f(A)=-1,b+c=2 時(shí),求a 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2sinx,2cosx),
n
=(
3
cosx,cosx),f(x)=
m
n
-1.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來(lái)的
1
2
,把所得到的圖象再向左平移
π
6
單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,
π
8
]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2sinx,cosx),
n
=(
3
cosx,2cosx),定義函數(shù)f(x)=m•n-1
(1)求f(x)的最小正周期
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)已知向量
m
=(2sinx,1),
n
=(
3
cosx,2cos2x),函數(shù)f(x)=
m
n
-t.
(Ⅰ)若方程f(x)=0在x∈[0,
π
2
]上有解,求t的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C所對(duì)的邊,當(dāng)(Ⅰ)中的t取最大值且f(A)=-1,b+c=2時(shí),求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案