用數(shù)學(xué)歸納法證明:12-22+32-42+…+(-1)n-1n2=(-1)n-1
證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=(-1)0=1,
故:左邊=右邊,
∴當(dāng)n=1時(shí),等式成立;
(2)假設(shè)n=k時(shí),等式成立,即 12﹣22+32﹣42+…+(﹣1)k-1k2=(-1)k-1·
那么12﹣22+32﹣42+…+(﹣1)k﹣1k2+(﹣1)k(k+1)2
=(﹣1)k-1·+(﹣1)k(k+1)2
=(﹣1)k·(﹣k+2k+2)=(﹣1)(k+1)﹣1·
即當(dāng)n=k+1時(shí),等式也成立.
根據(jù)(1)和(2)可知等式對(duì)任何n∈N+都成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
12
,Sn=n2an(n≥1)

(1)求S1,S2,S3并猜想Sn
(2)用數(shù)學(xué)歸納法證明(1)中猜想的正確性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
3
+…+
1
2n-1
n
2
(n∈N*),第二步由k到k+1時(shí)不等式左邊需增加( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南通一模)用數(shù)學(xué)歸納法證明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)4
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
,第一步應(yīng)該驗(yàn)證左式是
1-
1
2
1-
1
2
,右式是
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:1+3+5+…+(2n-1)=n2

查看答案和解析>>

同步練習(xí)冊(cè)答案