用數(shù)學歸納法證明:1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
,第一步應該驗證左式是
1-
1
2
1-
1
2
,右式是
1
2
1
2
分析:根據(jù)等式的特點,可知n=1時,左邊=1-
1
2
,右邊=
1
2
,故可得答案.
解答:解:根據(jù)等式的特點,可知n=1時,左邊=1-
1
2
,右邊=
1
2

故答案為:1-
1
2
,
1
2
點評:本題以等式為載體,考查數(shù)學歸納法的證題步驟,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=
12
,Sn=n2an(n≥1)

(1)求S1,S2,S3并猜想Sn;
(2)用數(shù)學歸納法證明(1)中猜想的正確性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明不等式1+
1
2
+
1
3
+…+
1
2n-1
n
2
(n∈N*),第二步由k到k+1時不等式左邊需增加( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•南通一模)用數(shù)學歸納法證明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)4
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明:1+3+5+…+(2n-1)=n2

查看答案和解析>>

同步練習冊答案