已知函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),且滿(mǎn)足f(xy)=f(x)+f(y),且f(
13
)=1.
(1)求f(1)與f(3);  
(2)若f(x)+f(2-x)<2,求x的取值范圍.
分析:(1)取x=y=1,結(jié)合題中等式解出f(1)=0.再令1=3×
1
3
代入,算出f(3)+f(
1
3
)=0,可得f(3)=-1;
(2)由2=1+1結(jié)合1=f(
1
3
)算出f(
1
9
)=2,從而將原不等式化成f[x(2-x)]<f(
1
9
),結(jié)合函數(shù)的單調(diào)性與定義域建立關(guān)于x的不等式組,解之即可得出x的取值范圍.
解答:解:(1)令x=y=1,得f(1)=f(1)+f(1),
∴f(1)=0.
因此,f(1)=f(3×
1
3
)=f(3)+f(
1
3
)=0,可得f(3)=-f(
1
3
)=-1;
(2)∵2=1+1=f(
1
3
)+f(
1
3
)=f(
1
3
×
1
3
)=f(
1
9

∴不等式f(x)+f(2-x)<2可化為f[x(2-x)]<f(
1
9
),
由f(x)為(0,+∞)上的減函數(shù),得
x>0
2-x>0
x(2-x)>
1
9
,解之得1-
2
2
3
<x<1+
2
2
3
,
∴x的取值范圍為(1-
2
2
3
,1+
2
2
3
).
點(diǎn)評(píng):本題給出抽象函數(shù),研究函數(shù)的特殊的函數(shù)值并依此解關(guān)于x的不等式.著重考查了函數(shù)的奇偶性和單調(diào)性及其相互關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)計(jì)算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線(xiàn)y=x和y軸的垂線(xiàn),垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿(mǎn)足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線(xiàn)y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案