分析 (1)求出從6人中隨機選出2人,選出的2人中至少有1個女運動員的基本事件數(shù),計算對應的概率值;
(2)根據(jù)題目中的數(shù)據(jù),畫出莖葉圖,計算甲、乙運動員的平均成績與方差,比較大小即可得出結論.
解答 解:(1)從6人中隨機選出2人,選出的2人中至少有1個女運動員的概率為
P=1-$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=1-$\frac{6}{15}$=$\frac{3}{5}$;
(2)根據(jù)題目中的數(shù)據(jù),畫出莖葉圖如圖所示;
設甲運動員的平均成績?yōu)?\overline{{x}_{1}}$,方差為${{s}_{1}}^{2}$,
乙運動員的平均成績?yōu)?\overline{{x}_{2}}$,方差為${{s}_{2}}^{2}$,
可得$\overline{{x}_{1}}$=$\frac{1}{5}$×(68+70+71+72+74)=71,
$\overline{{x}_{2}}$=$\frac{1}{5}$×(69+70+70+72+74)=71,
${{s}_{1}}^{2}$=$\frac{1}{5}$×[(68-71)2+(70-71)2+(71-71)2+(72-71)2+(74-71)2]=4,
${{s}_{2}}^{2}$=$\frac{1}{5}$×[(69-71)2+(70-71)2+(70-71)2+(72-71)2+(74-71)2]=3.2.
∵$\overline{{x}_{1}}$=$\overline{{x}_{2}}$,${{s}_{1}}^{2}$>${{s}_{2}}^{2}$,故乙運動員的成績更穩(wěn)定.
點評 本題考查了古典概型的概率與莖葉圖、平均數(shù)和方差的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com