【題目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函數(shù) 在[1,+∞)上單調(diào)遞減.
(I)若p∧q為真命題,求m的取值范圍;
(II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

【答案】解:若p為真,
令f(x)=cos2x﹣sinx+2,則m≥f(x)min ,
又f(x)=cos2x﹣sinx+2=cos2x﹣sinx+2=﹣2sin2x﹣sinx+3
又﹣1≤sinx≤1,
所以sinx=1時,
f(x)min=0,
所以m≥0
若q為真:
函數(shù) 在[1,+∞)上單調(diào)遞減,
,
所以m≤4
①若p∧q為真,則p,q均為真,所以m∈[0,4];②若p∨q為真,p∧q為假,則p,q一真一假,即 即m>4
即m<0
所以m的取值范圍為(﹣∞,0)∪(4,+∞)
【解析】先求出命題p,q為真時,m的取值范圍,( I)若p∧q為真命題,求兩個范圍的交集即可得到m的取值范圍;( II)若p∨q為真命題,p∧q為假命題,則p,q一真一假,進而可得m的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)).對任意,,,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題12分)設(shè)函數(shù)是定義域為R的奇函數(shù).

(1)求k的值;

(2)若,試說明函數(shù)的單調(diào)性,并求使不等式恒成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢測某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機抽取一件,試估計這件產(chǎn)品的質(zhì)量少于25千克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若是函數(shù)的極值點,求的值;

(2)當時,若,都有成立,求實數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),且對任意實數(shù),恒有,當時,

(1)求證: 是周期函數(shù);

(2)當時,求的解析式;

(3)計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a>b>1,0<c<1,則( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc

查看答案和解析>>

同步練習(xí)冊答案