已知集合A={x|x=|a|,a∈R且a≠0},B={y|y=|b-1998|,b∈R},求證:A?B.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:利用絕對值的意義和集合之間的關(guān)系即可證明.
解答: 證明:對于集合A:∵a∈R且a≠0,∴x=|a|>0,∴A=(0,+∞).
B對于集合A:∵b∈R,∴y=|b-1998|≥0,∴B=[0,+∞).
∴A?B.
點(diǎn)評:本題考查了絕對值的意義和集合之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C上的動點(diǎn)P是坐標(biāo)為(
3
cosθ,
2
sinθ).
(1)求曲線C的普通方程,并指出曲線的類型及焦點(diǎn)坐標(biāo);
(2)過點(diǎn)Q(2,1)作曲線C的兩條切線l1、l2,證明l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四面體ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°.點(diǎn)E在BD上,且DE=
1
3
DB.
(Ⅰ)求證:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個(gè)動點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由;
(3)過O點(diǎn)任作一直線與直線x=4交于E點(diǎn),過(2,0)點(diǎn)作直線與OE垂直,并且交直線x=4于F點(diǎn),以EF為直徑的圓是否過定點(diǎn),如過定點(diǎn)求出其坐標(biāo),如不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F(0,1)和直線l1:y=-1,過定點(diǎn)F與直線l1相切的動圓圓心為點(diǎn)C.
(1)求動點(diǎn)C的軌跡方程;
(2)過點(diǎn)F的直線l2交動點(diǎn)C的軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求
RP
RQ
的最小值;
(3)過點(diǎn)F且與l2垂直的直線l3交動點(diǎn)C的軌跡于兩點(diǎn)R、T,問四邊形PRQT的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,離心率為
2
2
的橢圓
x2
a2
+
y2
b2
=1(a>b>0)與直線l:x=-2相切于點(diǎn)A(-2,0).
(Ⅰ)求橢圓的方程;
(Ⅱ)若OA是圓C的直徑,P(x0,y0)(x0>0)為橢圓上的動點(diǎn),過P作圓C的兩條切線,分別交直線l于點(diǎn)M、N,求當(dāng)
PM
PN
取得最小值時(shí)P點(diǎn)的橫坐標(biāo)x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=2px的一個(gè)焦點(diǎn)與橢圓
x2
6
+
y2
2
=1的右焦點(diǎn)重合,
(1)求P的值;
(2)若點(diǎn)P(2,4)是拋物線上一點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),求線段PF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市交管部門為了宣傳新交規(guī)舉辦交通知識問答活動,隨機(jī)對該市15~65歲的人群抽樣了n人,回答問題統(tǒng)計(jì)結(jié)果如圖表所示:
 分組回答正確的人數(shù)回答正確的人數(shù)
占本組的頻率
第1組[15,25)50.5
第2組[25,35) a0.9
第3組[35,45)27 x
第4組[45,55) b0.36
第5組[55,65)3 y
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的2人中至少有一個(gè)第2組的人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且
PF1
PF2
.若△PF1F2的面積為16,則b=
 

查看答案和解析>>

同步練習(xí)冊答案