某地政府鑒于某種日常食品價(jià)格增長過快,欲將這種食品價(jià)格控制在適當(dāng)范圍內(nèi),決定對(duì)這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場(chǎng)價(jià)格為元/千克,政府補(bǔ)貼為 元/千克,根據(jù)市場(chǎng)調(diào)查,當(dāng)時(shí),這種食品市場(chǎng)日供應(yīng)量萬千克與市場(chǎng)日需量萬千克近似地滿足關(guān)系:,。當(dāng)市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格。
(1)將政府補(bǔ)貼表示為市場(chǎng)平衡價(jià)格的函數(shù),并求出函數(shù)的值域;
(2)為使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?
(1) t=-x+ ln(16≤x≤24)值域?yàn)閇+ ln,+ ln]
(2)要使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為1.5元/千克

試題分析:解: (1)由P=Q得2(x + 4t -14 )= 24+8ln(16≤x≤24 ,t>0)。
t=-x+ ln(16≤x≤24)。         3分
t′=--<0,t是x的減函數(shù)。
tmin=-24+ ln=+ln=+ ln;         5分
tmax=-16+ ln=+ ln, 值域?yàn)閇+ ln,+ ln]    7分
(2)由(1) t=-x+ ln(16≤x≤24)。
而x=20時(shí),t=-20 + ln=1.5(元/千克)         9分
t是x的減函數(shù)。欲使x20,必須t1.5(元/千克)
要使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為1.5元/千克。  2分
點(diǎn)評(píng):解決的關(guān)鍵是能利用導(dǎo)數(shù)的工具性作用來判定函數(shù)單調(diào)性,進(jìn)而得到函數(shù)的最值,屬于中檔題,易錯(cuò)點(diǎn)就是對(duì)于表達(dá)式的準(zhǔn)確表示。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)市場(chǎng)調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)萬件,需另投入流動(dòng)成本為萬元,在年產(chǎn)量不足8萬件時(shí),(萬元),在年產(chǎn)量不小于8萬件時(shí),(萬元). 通過市場(chǎng)分析,每件產(chǎn)品售價(jià)為5元時(shí),生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入固定成本流動(dòng)成本)
(2)年產(chǎn)量為多少萬件時(shí),在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動(dòng)點(diǎn)P從邊長為1的正方形ABCD的頂點(diǎn)A出發(fā)順次經(jīng)過B、C、D,再回到A,設(shè)表示P點(diǎn)行程,表PA的長,求關(guān)于的函數(shù)關(guān)系式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)的零點(diǎn)與函數(shù)的零點(diǎn)之差的      絕對(duì)值不超過,則可以是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若存在實(shí)常數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知偶函數(shù)滿足:任意的,都有,且時(shí),,則函數(shù)的所有零點(diǎn)之和為             .  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù) .若數(shù)列滿足,則實(shí)數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為定義在上的可導(dǎo)函數(shù),且對(duì)于恒成立,且為自然對(duì)數(shù)的底,則(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商店經(jīng)銷一種奧運(yùn)會(huì)紀(jì)念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務(wù)部門上交元(為常數(shù),2≤a≤5 )的稅收。設(shè)每件產(chǎn)品的售價(jià)為x元(35≤x≤41),根據(jù)市場(chǎng)調(diào)查,日銷售量與(e為自然對(duì)數(shù)的底數(shù))成反比例。已知每件產(chǎn)品的日售價(jià)為40元時(shí),日銷售量為10件。
(1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價(jià)x元的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的日售價(jià)為多少元時(shí),該商品的日利潤L(x)最大,并求出L(x)的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案