已知點直線,為平面上的動點,過點作直線的垂線,垂足為,且.
(1)求動點的軌跡方程;
(2)是軌跡上異于坐標(biāo)原點的不同兩點,軌跡在點處的切線分別為、,且
、相交于點,求點的縱坐標(biāo).

(1)動點的軌跡方程為;(2)點的縱坐標(biāo)為.

解析試題分析:(1)設(shè)動點的坐標(biāo)為,直接利用題中的條件列式并化簡,從而求出動點的軌跡方程;(2)先設(shè)點,利用導(dǎo)數(shù)求出曲線在點和點處的切線方程,并將兩切線方程聯(lián)立,求出交點的坐標(biāo),利用兩切線垂直得到,從而求出點的縱坐標(biāo).
試題解析:(1)設(shè),則,∵
. 即,即,
所以動點的軌跡M的方程.   4分
(2)設(shè)點的坐標(biāo)分別為、
、分別是拋物線在點、處的切線,
∴直線的斜率,直線的斜率.
,
, 得.  ①
、是拋物線上的點,

∴直線的方程為,直線的方程為.
 解得
∴點的縱坐標(biāo)為.
考點:1.動點的軌跡方程;2.利用導(dǎo)數(shù)求切線方程;3.兩直線的位置關(guān)系;4.兩直線的交點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線的方程為.
(1)若在兩坐標(biāo)軸上的截距相等,求的方程;
(2)若不經(jīng)過第二象限,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點A(3,3),B(5,2)到直線l的距離相等,且直線l經(jīng)過兩直線l1:3x-y-1=0和l2:x+y-3=0的交點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)推導(dǎo)點到直線的距離公式;
(2)已知直線互相平行,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的頂點的平分線所在直線方程為,邊上的高所在直線方程為

(1)求頂點的坐標(biāo);
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線經(jīng)過直線2x+y-2=0與x-2y+1=0的交點,且與直線 的夾角為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過直線的交點M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行;   (2)與直線2x+3y+5=0垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)設(shè)為平面上的點,滿足:存在過點的無窮多對互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求斜率為,且與坐標(biāo)軸所圍成的三角形的周長是12的直線的方程。

查看答案和解析>>

同步練習(xí)冊答案