【題目】已知函數(shù).

(I)討論的單調(diào)性;

(II)若恒成立,證明:當(dāng)時(shí),.

(III)在(II)的條件下,證明:.

【答案】I.見(jiàn)解析;Ⅱ.見(jiàn)解析;III 見(jiàn)解析.

【解析】

I:對(duì)函數(shù)求導(dǎo),分類討論導(dǎo)函數(shù)的正負(fù),進(jìn)而得到單調(diào)性;Ⅱ:通過(guò)分類討論可得到a=1,根據(jù),得到:,進(jìn)而得到結(jié)果; III:通過(guò)討論函數(shù)的單調(diào)性得到,進(jìn)而得到:,由Ⅱ知兩式相乘得到結(jié)果.

I.

,f(x)在上遞增;

若a>0,當(dāng)時(shí),,f(x)單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減。

Ⅱ.由I知,若a≤0,f(x)在(0,+)上遞增,又f(l)=0,故f(x)≤0不恒成立

若a>1,當(dāng)時(shí),f(x)遞減,f(x)>f(1)=0,不合題意。

若0<a<1,當(dāng)時(shí),f(x)遞增,f(x)>f(l)=0.不合題意。

若a=1.f(x)在(0,1)上遞增.在(1,+)上遞減,f(x)≤f(1)=0,合題意。

故a=1,且(當(dāng)且僅當(dāng)x=1時(shí)取 “=”)

當(dāng)0<x1<x2時(shí),

所以

III.

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),,g(x)單調(diào)遞減。

由(Ⅱ)知(當(dāng)且僅當(dāng)x=1時(shí)取 “=”)........... ②

兩個(gè)不等式的等號(hào)不能同時(shí)取到,故得到:

②得

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比為正數(shù)的等比數(shù)列,首項(xiàng),前n項(xiàng)和為,且,,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】江夏一中高二年級(jí)計(jì)劃假期開展歷史類班級(jí)研學(xué)活動(dòng),共有6個(gè)名額,分配到歷史類5個(gè)班級(jí)(每個(gè)班至少0個(gè)名額,所有名額全部分完).

1)共有多少種分配方案?

26名學(xué)生確定后,分成A、B、C、D四個(gè)小組,每小組至少一人,共有多少種方法?

36名學(xué)生來(lái)到武漢火車站.火車站共設(shè)有3個(gè)安檢入口,每個(gè)入口每次只能進(jìn)1個(gè)旅客,求6人進(jìn)站的不同方案種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

(2)在(1)的條件下,該縣決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱錐中,平面平面ABC,,,BD=3,AD=1,AC=BC,M為線段AB的中點(diǎn).

(Ⅰ)求證:平面ACD;

(Ⅱ)求異面直線MD與BC所成角的余弦值;

(Ⅲ)求直線MD與平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列,等差數(shù)列滿足,且的等比中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點(diǎn),是棱上的點(diǎn),,

1)求證:平面平面;

2)若為棱的中點(diǎn),求異面直線所成角的余弦值;

3)若二面角大小為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,點(diǎn),分別為棱,的中點(diǎn),點(diǎn)為上底面的中心,過(guò),,三點(diǎn)的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連結(jié)的任一點(diǎn),設(shè)與平面所成角為,則的最大值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)兩點(diǎn),,且圓心在直線上.

(1)求圓的方程;

(2)設(shè)圓軸相交于、兩點(diǎn),點(diǎn)為圓上不同于、的任意一點(diǎn),直線、軸于、點(diǎn).當(dāng)點(diǎn)變化時(shí),以為直徑的圓是否經(jīng)過(guò)圓內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案