【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2).

(1)求g(x)的解析式及定義域;

(2)求函數(shù)g(x)的最大值和最小值.

【答案】(1);定義域;(2);.

【解析】

試題分析:(1)帶入可得函數(shù)的解析式,復(fù)合函數(shù)的定義域是,不等式的解集就是函數(shù)的定義域;(2)根據(jù)指數(shù)運(yùn)算法則,可得,設(shè),可將函數(shù)轉(zhuǎn)換為的二次函數(shù),根據(jù)的取值范圍可求函數(shù)的最值.

試題解析:(1)f(x)2x,g(x)f(2x)f(x2)22x2x2.

f(x)的定義域是[0,3]

解得0x1.

g(x)的定義域是[0,1]

(2)g(x)(2x)24×2x

(2x2)24.

x[0,1],

2x[1,2]

當(dāng)2x1,即x0時(shí),g(x)取得最大值-3

當(dāng)2x2,即x1時(shí),g(x)取得最小值-4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l1l2,在l1上取3個(gè)點(diǎn),在l2上取2個(gè)點(diǎn),由這5個(gè)點(diǎn)能確定平面的個(gè)數(shù)為 (  )

A. 5 B. 4 C. 9 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間生產(chǎn)一種儀器的固定成本是元,每生產(chǎn)一臺(tái)該儀器需要增加投入元,已知總收入滿足函數(shù):,其中是儀器的月產(chǎn)量.

利潤(rùn)=總收入-總成本.

1將利潤(rùn)表示為月產(chǎn)量的函數(shù);

2當(dāng)月產(chǎn)量為何值時(shí),車間所獲利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)(x3)ex的單調(diào)遞增區(qū)間是(  )

A. (1,4) B. (0,3) C. (2,+∞) D. (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線l經(jīng)過(guò)第二、三、四象限,則直線l的傾斜角的范圍是 (  )

A. 0°≤α<90° B. 90°≤α<180°

C. 90°<α<180° D. 0°≤α<180°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面說(shuō)法正確的有

①演繹推理是由一般到特殊的推理;

②演繹推理得到的結(jié)論一定是正確的;

③演繹推理的一般模式是三段論;

④演繹推理的結(jié)論的正誤與大前提、小前提和推理形式有關(guān).

A. 1個(gè) B. 2個(gè)

C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右頂點(diǎn)為,左右焦點(diǎn)為,其長(zhǎng)半軸的長(zhǎng)等于焦距,點(diǎn)是橢圓上的動(dòng)點(diǎn),面積的最大值為

1求橢圓的方程;

2設(shè)為直線上不同于點(diǎn)的任意一點(diǎn),若直線分別與橢圓交于異于、的點(diǎn)、,判斷點(diǎn)與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合A={0,2,a},B={1,a2},若AB={0,1,2,4,16},則a的值為(  )

A. 0 B. 1

C. 2 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案