分析 (I)由Sn是${a_n}^2$和an的等差中項,可得$2{S_n}={a_n}^2+{a_n}$,利用遞推關系與等差數列的通項公式即可得出.
(II)利用“錯位相減法”與等比數列的求和公式即可得出.
解答 解:(I)∵Sn是${a_n}^2$和an的等差中項,∴$2{S_n}={a_n}^2+{a_n}$,
又$2{S_{n-1}}={a_{n-1}}^2+{a_{n-1}}(n≥2)$,
兩式相減并化簡得(an-an-1-1)(an+an-1)=0,
又an+an-1>0,∴an-an-1=1,
故數列{an}是公差為1的等差數列.
當n=1時,$2{a_1}=2{S_1}={a_1}^2+{a_1}$,又a1>0,∴a1=1.
∴an=1+(n-1)=n.
(II)由(I)知bn=n•22n=n•4n,∴Tn=1•41+2•42+…+n•4n,
∴4Tn=1•42+2•43+…+n•4n+1,
兩式相減,得-3Tn=41+42+…+4n-n•4n+1=$\frac{4(1-4n)}{1-4}$-n•4n+1=$\frac{1-3n}{3}$×4n+1-$\frac{4}{3}$.
∴Tn=$\frac{3n-1}{9}$×4n+1+$\frac{4}{9}$=$\frac{4+(3n-1)4n+1}{9}$.
點評 本題考查了數列遞推關系、“錯位相減法”、等差數列與等比數列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | [2,+∞) | B. | (-∞,$\frac{1}{2}$] | C. | ($\frac{1}{2}$,2] | D. | (0,$\frac{1}{2}$]∪[2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2≤a≤3 | B. | a>2 | C. | a≥2 | D. | 2≤a<3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com