13.設(shè)全集U為整數(shù)集,集合A={x∈N|y=$\sqrt{7x-{x}^{2}-6}$},B={x∈Z|-1<x≤3},則圖中陰影部分表示的集合的真子集的個數(shù)為( 。
A.3B.4C.7D.8

分析 根據(jù)Venn圖和集合之間的關(guān)系進行判斷.

解答 解:由Venn圖可知,陰影部分的元素為屬于B且屬于A的元素構(gòu)成,所以用集合表示為A∩B.
A={x∈N|y=$\sqrt{7x-{x}^{2}-6}$}={x∈N|7x-x2-6≥0}={x∈N|1≤x≤6}={1,2,3,4,5,6},
B={x∈Z|-1<x≤3}={0,1,2,3},
∴A∩B={1,2,3},
其真子集的個數(shù)為23-1=7
故選:C.

點評 本題主要考查Venn圖表達 集合的關(guān)系和運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知{an}是等比數(shù)列,a1=2,a4=54;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)Un=b1+b4+b7+…+b3n-2,其中n=1,2,…,求U10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正項數(shù)列{an}的前n項和為Sn,且Sn是${a_n}^2$和an的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}={a_n}•{2^{2{a_n}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}^x,x>1\end{array}$則滿足f(x)≤2的x取值范圍是( 。
A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知loga2=m,loga3=n.
(1)求a2m-n的值;
(2)用m,n表示 loga18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定圓M:(x+$\sqrt{3}$)2+y2=16,動圓N過點F($\sqrt{3}$,0)且與圓M相切,記圓心N的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線x=ny+1與E交于P,Q兩點,點P關(guān)于x軸的對稱點為P1(P1與Q不重合),則直線P1Q與x軸是否交于一個定點?若是,請寫出定點坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)計算${({lg2})^2}+lg5•lg20+{({\sqrt{2016}})^0}+{0.027^{\frac{2}{3}}}×{({\frac{1}{3}})^{-2}}$;
(2)已知$\frac{3tanα}{tanα-2}=-1$,求$\frac{7}{{{{sin}^2}α+sinα•cosα+{{cos}^2}α}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)點集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐標(biāo)平面xoy內(nèi)形成區(qū)域的邊界構(gòu)成曲線C,曲線C的中心為T,圓N:(x-2-5cosθ)2+(y-5sinθ)2=1,過圓N上任一點P分別作曲線C的兩切線PE,PF,切點分別為E,F(xiàn),則$\overrightarrow{TE}•\overrightarrow{TF}$的范圍為[-$\frac{\sqrt{5}+1}{4}$,$\frac{\sqrt{5}-1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\begin{array}{l}\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.\end{array}$(其中θ為參數(shù)),點M是曲線C1上的動點,點P在曲線C2上,且滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$.
(Ⅰ)求曲線C2的普通方程;
(Ⅱ)以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,射線θ=$\frac{2π}{3}$與曲線C1、C2分別交于A、B兩點,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案