5.若g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$,則g(x)=( 。
A.x+1B.x-1C.x-2D.x-$\frac{3}{2}$

分析 根據(jù)${∫}_{0}^{1}$g(t)dt是常數(shù)值,得出g(x)是一次函數(shù),利用待定系數(shù)法即可求出g(x)的解析式.

解答 解:∵g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$,
∵${∫}_{0}^{1}$g(t)dt為常數(shù),
∴g(x)為一次函數(shù),
設(shè)g(x)=ax+b,
${∫}_{0}^{1}$g(x)dx=($\frac{1}{2}$ax2+bx)|${\;}_{0}^{1}$=$\frac{1}{2}$a+b,
∴g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$=x-($\frac{1}{2}$a+b)-$\frac{3}{2}$=ax+b,
∴a=1,b=-1,
∴g(x)=x-1,
故選:B

點評 本題考查了利用待定系數(shù)法求函數(shù)解析式的應(yīng)用問題,也考查了定積分簡單應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于直線m,n和平面α,以下結(jié)論正確的是( 。
A.如果m?α,n?α,m、n是異面直線,那么n∥α
B.如果m?α,n與α相交,那么m、n是異面直線
C.如果m?α,n∥α,m、n共面,那么m∥n
D.如果m∥α,n∥α,m、n共面,那么m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實數(shù)a,b滿足等式2a=5b,給出下列五個關(guān)系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中,可能成立的關(guān)系式有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.證明f(x)=-x2+3在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知奇函數(shù)f(x)在R上為增函數(shù),且f(1)=$\frac{1}{2}$,若實數(shù)a滿足f(loga3)-f(loga$\frac{1}{3}$)≤1,則實數(shù)a的取值范圍為( 。
A.0<a≤$\frac{1}{3}$B.a≤$\frac{1}{3}$C.$\frac{1}{3}$≤a<1D.a≥3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知首項為-6的等差數(shù)列{an}的前7項和為0,等比數(shù)列{bn}滿足b3=a7,|b3-b4|=6.
(1)求數(shù)列{bn}的通項公式;
(2)是否存在正整數(shù)k,使得數(shù)列{$\frac{1}{_{n}}$}的前k項和大于$\sqrt{2}$?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x+x-1=3,則${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$值為(  )
A.$3\sqrt{3}$B.2$\sqrt{5}$C.$4\sqrt{5}$D.$-4\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸出的S=$\frac{2016}{1024}$,判斷框內(nèi)填入的條件可以是( 。
A.n<10B.n≤10C.n≤1024D.n<1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有下列命題:
①在函數(shù)y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象中,相鄰兩個對稱中心的距離為π;
②命題:“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sin≤1,則¬p是:存在x0∈R,使得sinx0>1;
⑤命題“若0<a<1,則loga(a+1)>loga(1+$\frac{1}{a}$)”是真命題;
⑥|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$+$\overrightarrow$|恒成立;
⑦若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$;  
其中所有真命題的序號是③④⑤⑦.

查看答案和解析>>

同步練習(xí)冊答案