【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.
【答案】(I)詳見解析;(II);(III).
【解析】試題分析:
(1)利用題意證得,然后由線面平行的判斷定理可得平面.
(2)建立空間直角坐標系,利用平面向量的法向量可得二面角的余弦值為.
(3)探索性問題,利用空間向量的結(jié)論可得在棱上存在點,使得,
此時.
試題解析:
(Ⅰ)證明:設(shè)與的交點為,連接.
因為為矩形,所以為的中點,
在中,由已知為中點,
所以,
又平面, 平面,
所以平面.
(Ⅱ)解:取中點,連接.
因為是等腰三角形, 為的中點,
所以,
又因為平面平面,
因為平面, ,
所以平面.
取中點,連接,
由題設(shè)知四邊形為矩形,
所以,
所以.
如圖建立空間直角坐標系,則, , , , , , ., .
設(shè)平面的法向量為,則即
令,則, ,所以.
平面的法向量為,
設(shè), 的夾角為,所以.
由圖可知二面角為銳角,
所以二面角的余弦值為.
(Ⅲ)設(shè)是棱上一點,則存在使得.
因此點, , .
由,即.
因為,所以在棱上存在點,使得,
此時.
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點R(x0 , y0)在D:y2=2px上,以R為切點的D的切線的斜率為 ,過Γ外一點A(不在x軸上)作Γ的切線AB、AC,點B、C為切點,作平行于BC的切線MN(切點為D),點M、N分別是與AB、AC的交點(如圖).
(1)用B、C的縱坐標s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試利用“切線三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調(diào)查,得如下數(shù)據(jù):
組數(shù) | 分組 | 認同人數(shù) | 認同人數(shù)占 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機變量ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C1的參數(shù)方程為 ,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=4 .
(1)求曲線C1的普通方程與曲線C2的直角坐標方程;
(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y= 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列個結(jié)論:
①棱長均相等的棱錐一定不是六棱錐;
②函數(shù)既不是奇函數(shù)又不是偶函數(shù);
③若函數(shù)的值域為,則實數(shù)的取值范圍是;
④若函數(shù)滿足條件,則的最小值為.
其中正確的結(jié)論的序號是:______. (寫出所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com