【題目】如圖,在四棱錐中,底面為矩形,平面平面, , 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.

【答案】(I)詳見解析;(II);(III).

【解析】試題分析:

(1)利用題意證得,然后由線面平行的判斷定理可得平面.

(2)建立空間直角坐標系,利用平面向量的法向量可得二面角的余弦值為.

(3)探索性問題,利用空間向量的結(jié)論可得在棱上存在點,使得,

此時

試題解析:

(Ⅰ)證明:設(shè)的交點為,連接.

因為為矩形,所以的中點,

中,由已知中點,

所以,

平面 平面,

所以平面.

(Ⅱ)解:取中點,連接.

因為是等腰三角形, 的中點,

所以,

又因為平面平面

因為平面,

所以平面

中點,連接

由題設(shè)知四邊形為矩形,

所以,

所以. 

如圖建立空間直角坐標系,則, , , , ., .

設(shè)平面的法向量為,則

,則, ,所以.

平面的法向量為,

設(shè) 的夾角為,所以.

由圖可知二面角為銳角,

所以二面角的余弦值為.

(Ⅲ)設(shè)是棱上一點,則存在使得

因此點,

,即

因為,所以在棱上存在點,使得

此時

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點R(x0 , y0)在D:y2=2px上,以R為切點的D的切線的斜率為 ,過Γ外一點A(不在x軸上)作Γ的切線AB、AC,點B、C為切點,作平行于BC的切線MN(切點為D),點M、N分別是與AB、AC的交點(如圖).

(1)用B、C的縱坐標s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試利用“切線三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調(diào)查,得如下數(shù)據(jù):

組數(shù)

分組

認同人數(shù)

認同人數(shù)占
本組人數(shù)比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,曲線C1的參數(shù)方程為 ,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=4
(1)求曲線C1的普通方程與曲線C2的直角坐標方程;
(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=(
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列個結(jié)論:

①棱長均相等的棱錐一定不是六棱錐;

②函數(shù)既不是奇函數(shù)又不是偶函數(shù);

③若函數(shù)的值域為,則實數(shù)的取值范圍是;

④若函數(shù)滿足條件,則的最小值為

其中正確的結(jié)論的序號是:______. (寫出所有正確結(jié)論的序號)

查看答案和解析>>

同步練習冊答案