精英家教網 > 高中數學 > 題目詳情

【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調查,得如下數據:

組數

分組

認同人數

認同人數占
本組人數比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內的人數記為ξ,求隨機變量ξ的分布列和期望.

【答案】
(1)解:設[25,30)年齡段人數為x人,

由題意 ,解得x=200,

∵[25,30)年齡段人數的頻率為0.04×5=0.2,

,解得n=1000.

∵[30,35)年齡段人數的頻率為:1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,

∴[30,35)年齡段人數為0.3×1000=300,

∴p= =0.65,

∵[40,45)年齡段人數的頻率為0.03×5=0.15,

∴[40,45)年齡段人數為0.15×1000=150,

∴a=150×0.4=60.

完成頻率分布直方圖如下:


(2)解:由(1)得[40,45)年齡段中認同人數為60人,[45,50)兩段中認同人數為30人,

按分層抽樣的方法抽9人參與座談會,[40,45)年齡段中抽取6人,[45,50)年齡段中抽取3人,

ξ的可能取值為0,1,2,

P(ξ=0)= = ,P(ξ=1)= =

P(ξ=2)= = ,

ξ的分布列為:

ξ

0

1

2

P

Eξ= =


【解析】(1)由頻率= ,利用已知條件能完成所給頻率分布直方圖,并能求出n,a,p.(2)由[40,45)年齡段中認同人數為60人,[45,50)兩段中認同人數為30人,按分層抽樣的方法抽9人參與座談會,[40,45)年齡段中抽取6人,[45,50)年齡段中抽取3人,ξ的可能取值為0,1,2,分別求出相應的概率,由此能求出ξ的分布列和數學期望.
【考點精析】掌握頻率分布直方圖和離散型隨機變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,過點的直線與橢圓相交于兩點,且的周長為8.

(1)求橢圓的方程;

(2)若經過原點的直線與橢圓相交于兩點,且,試判斷是否為定值?若為定值,試求出該定值;否則,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙兩人同時生產內徑為的一種零件,為了對兩人的生產質量進行評比,從他們生產的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產的零件內徑的尺寸看、誰生產的零件質量較高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,四邊形為直角梯形, , , ,四邊形為矩形.

(1)求證:平面平面;

(2)線段上是否存在點,使得二面角的大小為?若存在,確定點的位置并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設{an}是等比數列,公比為q(q>0且q≠1),4a1 , 3a2 , 2a3成等差數列,且它的前4項和為S4=15.
(1)求{an}通項公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知圓O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是圓O的直徑.過點C作圓O的切線交BA的延長線于點F.

(1)求證:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一動點, 到點的距離減去它到軸距離的差都是

)求動點的軌跡方程.

)設動點的軌跡為,已知定點、,直線、與軌跡的另一個交點分別為

i)點能否為線段的中點,若能,求出直線的方程,若不能,說明理由.

ii)求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】統計表明,家庭的月理財投入(單位:千元)與月收入(單位:千元)之間具有線性相關關系.某銀行隨機抽取5個家庭,獲得第)個家庭的月理財投入與月收入的數據資料,經計算得

(1)求關于的回歸方程;

(2)判斷之間是正相關還是負相關;

(3)若某家庭月理財投入為5千元,預測該家庭的月收入.

附:回歸方程的斜率與截距的最小二乘估計公式分別為:

,其中為樣本平均值.

查看答案和解析>>

同步練習冊答案