某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測上市初期和廂期會(huì)因供應(yīng)不足使價(jià)格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價(jià)格連續(xù)下跌.現(xiàn)有三種價(jià)格模擬函數(shù):①f(x)=p.qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均為常數(shù),且q>l).
(1)為準(zhǔn)確研究其價(jià)格走勢,應(yīng)選哪種價(jià)格模擬函數(shù)(不必說明理由);
(2)若f(0)=4,f(2)=6,求出所選函數(shù)f(x)的解析式(注:函數(shù)定義域是[0,5].其中x=0表示8月1日,x=l表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟(jì)效益,當(dāng)?shù)卣?jì)劃在價(jià)格下跌期間積極拓寬外銷,請你預(yù)測該海鮮將在哪幾個(gè)月份內(nèi)價(jià)格下跌.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用價(jià)格呈現(xiàn)前幾次與后幾次均連續(xù)上升,中間幾次連續(xù)下降的趨勢,故可從三個(gè)函數(shù)的單調(diào)上考慮,前面兩個(gè)函數(shù)沒有出現(xiàn)兩個(gè)遞增區(qū)間和一個(gè)遞減區(qū)間,應(yīng)選f(x)=x(x-q)2+p為其模擬函數(shù);
(2)由題中條件:f(0)=4,f(2)=6,得方程組,求出p,q即可,從而得到f(x)的解析式;
(3)確定函數(shù)解析式,利用導(dǎo)數(shù)小于0,即可預(yù)測該果品在哪幾個(gè)月份內(nèi)價(jià)格下跌.
解答: 解:(1)因?yàn)閒(x)=pqx是單調(diào)函數(shù),f(x)=px2+qx+1,只有兩個(gè)單調(diào)區(qū)間,不符合題設(shè)中的價(jià)格變化規(guī)律
在f(x)=x(x-q)2+p中,f′(x)=3x2-4qx+q2,
令f′(x)=0,得x=q,x=
q
3
,即f(x)有兩個(gè)零點(diǎn),可以出現(xiàn)兩個(gè)遞增區(qū)間和一個(gè)遞減區(qū)間,符合題設(shè)中的價(jià)格變化規(guī)律,所以應(yīng)選f(x)=x(x-q)2+p為價(jià)格模擬函數(shù);
(2)由f(0)=4,f(2)=6,得
p=4
2(2-q)2+p=6
q>1
,∴p=4,q=3
(3)f(x)=x3-6x2+9x+4(0≤x≤5,且x∈Z).
由f′(x)=3x2-12x+9<0得:1<x<3,
由題意可預(yù)測該果品在9、10月份內(nèi)價(jià)格下跌.
點(diǎn)評:本題考查函數(shù)模型的確定,考查函數(shù)解析式,考查利用數(shù)學(xué)知識解決實(shí)際問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、在(0,
π
2
)內(nèi),sinx>cosx
B、函數(shù)y=2sin(x+
π
5
)的圖象的一條對稱軸是x=
4
5
π
C、函數(shù)y=
π
1+tan2x
的最大值為π
D、函數(shù)y=sin2x的圖象可以由函數(shù)y=sin(2x-
π
4
)的圖象向右平移
π
8
個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=-3求:
(1)
sinθ+2cosθ
cosθ-3sinθ

(2)sin2θ-sinθ•cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos155°=a,則tan205°=( 。
A、
a
1-a2
B、
1-a2
a
C、-
a
1-a2
D、-
1-a2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
ax
x+2
>1的解集為(-2,a),則實(shí)數(shù)a的值為(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對a,b∈R,記min{a,b}=
a(a<b)
b(a≥b)
,按如下方式定義函數(shù)f(x):對于每個(gè)實(shí)數(shù)x,f(x)=min{x2,6-x,2x+8}.則函數(shù)f(x)最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x+m恰好有兩個(gè)零點(diǎn),則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線a,b,c,兩個(gè)平面α,β.則下列命題中:
①a∥c,c∥b⇒a∥b;
②a∥β,b∥β⇒a∥b;
③a∥c,c∥α⇒a∥α;
④a∥β,a∥α⇒α∥β;
⑤a?α,b∥α,a∥b⇒a∥α,
正確的命題是( 。
A、①⑤B、①②C、②④D、③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,長軸長為2
3
,直線l:y=kx+2交橢圓于不同的A,B兩點(diǎn).
(1)求橢圓的方程;
(2)O是坐標(biāo)原點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案