f(x)=(
x+1
x
)2
(x>0).
(1)求f(x)的反函數(shù)f-1(x)
(2)若x≥2時,不等式(x-1)f-1(x)>a(a-
x
)
恒成立,求實數(shù)a的取值范圍.
分析:(1)從條件中函數(shù)式f(x)=(
x+1
x
)2
=y,(x>0)中反解出x,再將x,y互換即得f(x)的反函數(shù)f-1(x).
(2)利用(1)的結(jié)論,將不等式(x-1)f-1(x)>a(a-
x
)
化成(a+1)
x
a2-1
,下面對a分類討論:①當a+1>0;②當a+1<0.分別求出求實數(shù)a的取值范圍,最后求它們的并集即可.
解答:解:(1)∵y=(
x+1
x
)2=(1+
1
x
)2
(x>0)∴y>1(2分)
由原式有:
x+1
x
=
y
x+1=
y
x

x=
1
y
-1
(2分)
f-1(x)=
1
x
-1
x∈(1,+∞)(2分)
(2)∵(x-1)f-1(x)>a(a-
x
)

(x-1)
1
x
-1
>a(a-
x
)
(x>0)
(
x
+1)(
x
-1)
1
x
-1
>a(a-
x
)

x
+1>a2-a
x

(a+1)
x
a2-1
(2分)
①當a+1>0即a>-1時
x
>a-1
對x≥2恒成立-1<a<
2
+1

②當a+1<0即a<-1時
x
<a-1
對x≥2恒成立
a>
2
+1
此時無解(3分)
綜上-1<a<
2
+1
-(1分)
點評:本小題主要考查反函數(shù)、函數(shù)恒成立問題等基礎知識,考查運算求解能力.求反函數(shù),一般應分以下步驟:(1)由已知解析式y(tǒng)=f(x)反求出x=Ф(y);(2)交換x=Ф(y)中x、y的位置;(3)求出反函數(shù)的定義域(一般可通過求原函數(shù)的值域的方法求反函數(shù)的定義域).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=
x+1(x≥1)
3-x(x<1)
,則f(f(-1))的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

f(x)=
x+1(x≥1)
3-x(x<1)
,則f(f(-1))的值為( 。
A.5B.4C.
5
2
D.-1

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案