分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a,b的方程,解出a,b的值,從而求出f(x)的解析式,求出函數(shù)的遞減區(qū)間即可;
(Ⅱ)根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為“?x2∈[1,e],使λ(x+$\frac{4}{x}$)<$\frac{9}{2}$”,即“?x2∈[1,e],使λ<$\frac{9}{2(x+\frac{4}{x})}$成立”,求出λ的范圍即可.
解答 解:(Ⅰ)f′(x)=$\frac{4}{x}$+2ax+b=$\frac{2{ax}^{2}+bx+4}{x}$(x>0),
∵1和4別是f(x)的兩個(gè)極值點(diǎn),
∴1和4別是f′(x)=0的兩根,
∴1+4=-$\frac{2a}$,1×4=$\frac{4}{2a}$,解得a=$\frac{1}{2}$,b=-5,
∴f(x)=4lnx+$\frac{1}{2}$x2-5x. …(3分)
由上得f′(x)=$\frac{4}{x}$+x-5=$\frac{(x-1)(x-4)}{x}$(x>0))
由f′(x)<0,解得1<x<4.故f(x)的單調(diào)遞減區(qū)間為(1,4)…(4分)
(Ⅱ)對(duì)于?x1∈[1,e],?x2∈[1,e],使得f(x1)+λ[f′(x2)+5]<0成立,
?等價(jià)于“?x2∈[1,e],使得λ[f′(x2)+5]<[-f(x1)]min,x1∈[1,e].
由上可得:x1∈[1,e],f(x1)單調(diào)遞減,故-f(x1)單調(diào)遞增,
∴[-f(x1)]min=-f(1)=$\frac{9}{2}$; …(6分)
又x2∈[1,e],時(shí),f′(x2)+5=$\frac{4}{{x}^{2}}$+x2>0且在[1,2]上遞減,在[2,e]遞增,
∴[f′(x2)]min=f′(2)=4,…(8分)
從而問題轉(zhuǎn)化為“?x2∈[1,e],使λ(x+$\frac{4}{x}$)<$\frac{9}{2}$”,
即“?x2∈[1,e],使λ<$\frac{9}{2(x+\frac{4}{x})}$成立”,
故λ<${[\frac{9}{2(x+\frac{4}{x})}]}_{max}$=$\frac{9}{2×4}$=$\frac{9}{8}$,
∴λ∈(-∞,$\frac{9}{8}$). …(12分)
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查轉(zhuǎn)化思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | -$\frac{5}{4}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com