【題目】已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,則直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于,兩點(diǎn),且.

1)求圓的直角坐標(biāo)方程,并求出圓心坐標(biāo)和半徑;

2)求實(shí)數(shù)的值.

【答案】1,圓圓心為,半徑為1;(2.

【解析】

1)依題意可知,然后根據(jù),可得圓的直角坐標(biāo)方程,轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程形式,可得結(jié)果.

(2)通過消參可得直線的普通方程,根據(jù)圓的半徑以及,可得圓心到直線的距離,然后利用圓心到直線的距離公式,簡單計(jì)算可得結(jié)果.

1)圓的極坐標(biāo)方程是,則

,則,

,所以圓的直角坐標(biāo)方程為

圓心為,半徑為1.

2)由題可得直線的普通方程為,

,半徑可得圓心到直線得距離

,所以,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到,得到即終止運(yùn)算,己知正整數(shù)經(jīng)過次運(yùn)算后得到,則的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》是中國最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長依次成等差數(shù)列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為:(

A.15.5B.12.5C.9.5D.6.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解疫情期間哈一中高三學(xué)生的心理需求,更好的開展高考前的心理健康教育工作,心理老師設(shè)計(jì)了兩個(gè)問題,第一個(gè)問題是你出生的月份是奇數(shù)嗎?;第二個(gè)問題是你是否需要心理疏導(dǎo)?”.讓被調(diào)查者在保密的情況下擲一個(gè)均勻的骰子,其他人不知道擲骰子的結(jié)果,要求:當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),回答第一個(gè)問題;否則回答第二個(gè)問題,由于其他人不知道他回答的是哪一個(gè)問題,因此,當(dāng)他回答時(shí),你也無法知道他是否有心理問題,這種調(diào)查既保護(hù)了他的隱私,也能反映真實(shí)情況,可以從調(diào)查結(jié)果中得到需要的估計(jì),若調(diào)查的900名學(xué)生中有156人回答,由此可估計(jì)我校高三需要心理疏導(dǎo)的學(xué)生所占的比例約為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三十二班同學(xué)設(shè)計(jì)了一個(gè)如圖所示的蝴蝶形圖案(陰影區(qū)域)來預(yù)示在6月的高考中,同學(xué)們展翅高飛,其中是過拋物線的焦點(diǎn)的兩條弦,且,點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線的方程;

(2)當(dāng)蝴蝶形圖案的面積最小時(shí),求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形中,,,,中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面.

1)證明:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,P為直線上的動(dòng)點(diǎn),動(dòng)點(diǎn)Q滿足,且原點(diǎn)O在以為直徑的圓上.記動(dòng)點(diǎn)Q的軌跡為曲線C

1)求曲線C的方程:

2)過點(diǎn)的直線與曲線C交于A,B兩點(diǎn),點(diǎn)D(異于A,B)在C上,直線,分別與x軸交于點(diǎn)MN,且,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案