某單位安排甲、乙、丙、丁四名實習生到兩個不同的部門,每個部門至少安排一名實習生,則甲、乙兩名實習生安排到同一個部門的概率為
 
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:根據(jù)題意,求出四名實習生中有兩名分在一個部門的種數(shù)以及有三名分在一個部門的種數(shù);再求出甲、乙二人被分在同一個部門的種數(shù),計算概率即可.
解答: 解:根據(jù)題意,得;
每個部門至少分到一名實習生,
四名實習生中有兩名分在一個部門的種數(shù)是C42
C
2
2
=6,
有三名分在一個部門的有
C
3
4
C
1
1
=4種;
而甲、乙二人被分在同一個部門的有2種,
∴甲、乙兩名實習生安排到同一個部門的概率為
P=
2
6+4
=
1
5

故答案為:
1
5
點評:本題考查了古典概型的概率的計算問題,也考查了排列與組合的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(x1,y1),B(x2,y2),C(x2,0),D(x1,0),其中x2>x1>0,且y1x12-x1+y1=0,y2x22-x2+y2=0.若四邊形ABCD是矩形,則此矩形繞x軸旋轉(zhuǎn)一周得到的圓柱的體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y∈R,x>0,若(x+yi)2=y+xi,則(x+yi)2000的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在梯形ABCD中,AD∥BC,BC=2AD,AD=AB=
2
,AB⊥BC,如圖把△ABD沿BD翻折,使得平面ABD⊥平面BCD.

(Ⅰ)求證:CD⊥平面ABD;
(Ⅱ)若點M為線段BC中點,求點M到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點C是圓O的直徑BE的延長線上一點,AC是圓O的切線,A為切點,∠ACB的平分線CD與AB相交于點D,與AE相交于點.F
(Ⅰ)求∠ADF的度數(shù);(Ⅱ)若AB=AC,求
AC
BC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
3
,長軸長是短軸長的2倍.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)斜率為k的直線l交橢圓于A、B兩點,其中A點為橢圓的左頂點,若橢圓的上頂點P始終在以AB為直徑的圓內(nèi),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B,C為⊙O上的三個點,AD是∠BAC的平分線,交⊙O于點D,過B作⊙O的切線交Ad的延長線于點E.
(Ⅰ)證明:BD平分∠EBC;
(Ⅱ)證明:AE•DC=AB•BE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x-[x],x≥0
f(x+1),x<0
,其中[x]表示不超過x的最大整數(shù),如[-1.2]=-2,[1.2]=1,[1]=1,若直線ky=x+1(k>0)與函數(shù)y=f(x)的圖象恰有兩個不同的交點,則k的取值范圍是( 。
A、[2,3)
B、[3,∞)
C、[2,3]
D、(2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∥b,M∈a,N∈b,MN⊥a,A∈MN,AM=AN=1,B∈a,C∈b,∠BAC=90°,求△ABC周長的最小值.

查看答案和解析>>

同步練習冊答案