【題目】在120°的二面角α--β的兩個(gè)面內(nèi)分別有點(diǎn)A,B,A∈α,B∈β,A,B到棱l的距離AC,BD分別是2,4,且線段AB=10.
(1)求C,D間的距離;
(2)求直線AB與平面β所成角的正弦值.
【答案】(1)6 (2)
【解析】
(1)要求CD長,應(yīng)將CD放在三角形中,過點(diǎn)C作BD的平行線,取CE=BD=4,根據(jù)余弦定理可求出AE的長,最后在直角三角形AEB求出BE長,而四邊形BECD為矩形,即可求出所求;
(2)在△ACD所在的平面內(nèi),作AF⊥CD交CD的延長線于點(diǎn)F,利用面面垂直的性質(zhì)即可證明AF⊥平面Q,從而得到∠ABF是直線AB和平面Q所成的角.
(1)過點(diǎn)C作BD的平行線,取CE=BD=4,
∵AC⊥l,而CE⊥l,則∠ACE=120°
根據(jù)余弦定理可知cos∠ACE
解得:AE
而三角形AEB為直角三角形,則BE=6
即CD=6
(2)在△ACE所在的平面內(nèi),作AO⊥CE交CE的反向延長線于點(diǎn)O.
∵平面ACE⊥平面β,∴AF⊥平面β.
在△ACO中,∠ACO=60°,AC=2,∴AO.
連接OB,于是∠ABO是AB和平面β所成的角,
在△ABO為直角三角形,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】霧霾影響人們的身體健康,越來越多的人開始關(guān)心如何少產(chǎn)生霧霾,春節(jié)前夕,某市健康協(xié)會為了了解公眾對“適當(dāng)甚至不燃放煙花爆竹”的態(tài)度,隨機(jī)采訪了50人,將凋查情況進(jìn)行整理后制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 12 | 7 | 3 | 3 |
(1)以贊同人數(shù)的頻率為概率,若再隨機(jī)采訪3人,求至少有1人持贊同態(tài)度的概率;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊同“適當(dāng)甚至不燃放煙花爆竹”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過點(diǎn)(0,1),且與x軸有唯一交點(diǎn)。
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)在[1,2]上的最小值h(a)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2,AC=BC,F(xiàn) 是AB上一點(diǎn),且AF=AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知:,
(1)求證:AD⊥平面BCE;
(2)求三棱錐A﹣CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面4個(gè)結(jié)論:
①直線BE與直線CF共面;②直線BE與直線AF異面;
③直線EF∥平面PBC;④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若在上為減函數(shù),求的取值范圍;
(2)若關(guān)于的方程在內(nèi)有唯一解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com