【題目】每年春節(jié),各地的餐館都出現(xiàn)了用餐需預(yù)定的現(xiàn)象,致使一些人在沒有預(yù)定的情況下難以找到用餐的餐館,針對這種現(xiàn)象,專家對人們的用餐地點(diǎn)及性別作出調(diào)查,得到的情況如下表所示:
在家用餐 | 在餐館用餐 | 總計(jì) | |
男性 | 30 | ||
女性 | 40 | ||
總計(jì) | 50 | 100 |
(1)完成上述列聯(lián)表;
(2)根據(jù)表中的數(shù)據(jù),試通過計(jì)算判斷是否有的把握說明用餐地點(diǎn)與性別有關(guān)?
參考公式及數(shù)據(jù):,其中.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)填表見解析(2)有的把握說明用餐地點(diǎn)與性別有關(guān)
【解析】
(1)根據(jù)表格中數(shù)據(jù)的關(guān)系,完善列聯(lián)表;(2)根據(jù)表中數(shù)據(jù)計(jì)算觀測值,對照臨界值即可得出結(jié)論.
(1)補(bǔ)充完整的2×2列聯(lián)表如下:
在家用餐 | 在餐館用餐 | 總計(jì) | |
男性 | 10 | 30 | 40 |
女性 | 40 | 20 | 60 |
總計(jì) | 50 | 50 | 100 |
(2)假設(shè)用餐地點(diǎn)與性別無關(guān),
因?yàn)?/span>的觀測值
=
因?yàn)?/span>,
所以有的把握說明用餐地點(diǎn)與性別有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是我們常見的空間幾何體.
(1) (2) (3) (4) (5) (6) (7) (8) (9)(10)
(11)
(1)以上幾何體中哪些是棱柱?
(2)一個幾何體為棱柱的充要條件是什么?
(3)如何求以上幾何體的表面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)(,)
(1)設(shè),求的單調(diào)區(qū)間;
(2)設(shè)為導(dǎo)數(shù),
(i)證明:當(dāng),時(shí),;
(ii)設(shè)關(guān)于的方程的根為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為,離心率為 .
(1)求橢圓的方程;
(2)設(shè)橢圓C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,斜率為的直線l與橢圓C交于P、Q兩點(diǎn)(點(diǎn)P在第一象限).若四邊形APBQ面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項(xiàng)和為( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2018年在其扶貧基地投入萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長10%.
(1)寫出第年(2019年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域;
(2)該企業(yè)從第幾年開始(2019年為第一年),每年投入的資金數(shù)將超過萬元?
(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖,M是圖象的一個最低點(diǎn),圖象與x軸的一個交點(diǎn)的坐標(biāo)為,與y軸的交點(diǎn)坐標(biāo)為.
(1)求A,,的值;
(2)若關(guān)于x的方程在上有一解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海岸線l一側(cè)P處有一個美麗的小島,某旅游公司為方便登島游客,在l上設(shè)立了M,N兩個報(bào)名接待點(diǎn),P,M,N三點(diǎn)滿足任意兩點(diǎn)間的距離為公司擬按以下思路運(yùn)作:先將M,N兩處游客分別乘車集中到MN之間的中轉(zhuǎn)點(diǎn)Q處點(diǎn)Q異于M,N兩點(diǎn),然后乘同一艘游輪由Q處前往P島據(jù)統(tǒng)計(jì),每批游客報(bào)名接待點(diǎn)M處需發(fā)車2輛,N處需發(fā)車4輛,每輛汽車的運(yùn)費(fèi)為20元,游輪的運(yùn)費(fèi)為120元設(shè),每批游客從各自報(bào)名點(diǎn)到P島所需的運(yùn)輸總成本為T元.
寫出T關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;
問:中轉(zhuǎn)點(diǎn)Q距離M處多遠(yuǎn)時(shí),T最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com