【題目】函數(shù),.

(1),設(shè),試證明存在唯一零點,并求的最大值;

(2)若關(guān)于的不等式的解集中有且只有兩個整數(shù),求實數(shù)的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:(1)根據(jù)零點存在性定理,首先證明函數(shù)的單調(diào)性,再證明存在區(qū)間使 即證明;求函數(shù)的最大值,先求函數(shù)的導(dǎo)數(shù)求導(dǎo)函數(shù)的零點,并判斷零點兩側(cè)的單調(diào)性,即可求得函數(shù)的最大值;(2)不等式等價于,然后參變分離為 ,利用導(dǎo)數(shù)分析函數(shù) 以及函數(shù),根據(jù)所分析函數(shù)性質(zhì),當(dāng)時,只有2個正整數(shù)解,求的取值范圍.

試題解析:(1)證明:由題意知,

于是

,

上單調(diào)遞減.

,

所以存在,使得

綜上存在唯一零點.

解:當(dāng),于是,單調(diào)遞增;

當(dāng),于是,單調(diào)遞減;

,

,,,

.

(2)解:等價于.

,

,則

,則,即上單調(diào)遞增.

,

∴存在,使得.

∴當(dāng)上單調(diào)遞增;

當(dāng)上單調(diào)遞減.

,,

且當(dāng)時,,

,,

故要使不等式解集中有且只有兩個整數(shù),的取值范圍應(yīng)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 a=2csinA
(1)確定角C的大;
(2)若c= ,且△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請你設(shè)計一個包裝盒.如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,CD四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒.E、FAB上,是被切去的一個等腰直角三角形斜邊的兩個端點.設(shè)AEFBx(cm)

(1)若廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?

(2)某廠商要求包裝盒的容積V(cm3)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)矩形ABCD(AB>AD)的周長為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形和菱形所在平面互相垂直,如圖,其中,,點是線段的中點.

(Ⅰ)試問在線段上是否存在點,使得直線平面?若存在,請證明平面,并求出的值;若不存在,請說明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第組的員工人數(shù)分別是多少?

(II)為了交流讀書心得,現(xiàn)從上述人中再隨機抽取人發(fā)言,設(shè)人中年齡在的人數(shù)為,求的數(shù)學(xué)期望;

(III)為了估計該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做是否喜歡閱讀國學(xué)類書籍進行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)

喜歡閱讀國學(xué)類

不喜歡閱讀國學(xué)類

合計

14

4

18

8

14

22

合計

22

18

40

根據(jù)表中數(shù)據(jù),我們能否有的把握認(rèn)為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?

附:,其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具廠有方木料,五合板,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料,五合板,生產(chǎn)每個書櫥需要方木料,五合板,出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元.

1)如果只安排生產(chǎn)書桌,可獲利潤多少?

2)如果只安排生產(chǎn)書櫥,可獲利潤多少?

3)怎樣安排生產(chǎn)可使所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時, 求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0).設(shè)圓T與橢圓C交于點M與點N.
(1)求 的最小值;
(2)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標(biāo)原點,求證:丨OR丨丨OS丨為定值.

查看答案和解析>>

同步練習(xí)冊答案