一個幾何體的三視圖如圖所示,則它的體積為
 

考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:幾何體是四棱錐,根據(jù)三視圖判斷相關幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱錐的體積公式計算.
解答: 解:由三視圖知:幾何體是四棱錐,如圖:
其中SA⊥平面ABCD,SA=4,四邊形ABCD為直角梯形,AD∥BC,AB=AD=4,BC=1.
∴幾何體的體積V=
1
3
×
1+4
2
×4×4=
40
3

故答案為:
40
3

點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某同學為了研究函數(shù)f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性質,構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設CP=x,則f(x)=AP+PF.
(1)fmin(x)=
 
;
(2)函數(shù)f(x)=
22
2
的零點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表是關于新生嬰兒的性別與出生時間段調查的列聯(lián)表,那么,A=
 
,B=
 
,C=
 
,D=
 

晚上 白天 總計
45 A 92
B 35 C
總計 98 D 180

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個三角形的三邊長分別是5,5,6,在三角形內任投一點,則該點距離三角形的三個頂點的距離均超過
1
π
的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內有兩定點A、B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A、B為焦點的橢圓”,那么甲是乙的
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線C:y2=4x上一點P(2,t)到焦點F的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2為雙曲線C:
x2
4
-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則P到x軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某種設備的使用年限x和支出的維修費用y(萬元),有以下的統(tǒng)計資料:
使用年限x 2 3 4 5 6
維修費用y 2.2 3.8 5.5 6.5 7.0
若維修費用y(萬元)與使用年限x的線性回歸方程是:
y
=1.23x+a,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC中,∠C=90°,AB=2,AC=1,若
AD
=
3
2
AB
,則
CD
CB
=( 。
A、
3
2
B、
6
2
C、
3
2
D、
9
2

查看答案和解析>>

同步練習冊答案