【題目】某商場(chǎng)推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿(mǎn)1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說(shuō)法中錯(cuò)誤的是(

A.獲得參與獎(jiǎng)的人數(shù)最多

B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高

C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍

D.獎(jiǎng)金平均數(shù)為

【答案】B

【解析】

由于各獲獎(jiǎng)人數(shù)所占總獲獎(jiǎng)人數(shù)的百分比的比例關(guān)系與各獲獎(jiǎng)人數(shù)的比例關(guān)系一致,即可判斷A,C;設(shè)獲獎(jiǎng)人數(shù)為,分別求得各獎(jiǎng)項(xiàng)的總金額,即可判斷B;利用平均數(shù)的公式求解平均數(shù),即可判斷D.

由圖可知,獲得參與獎(jiǎng)的人數(shù)占獲獎(jiǎng)人數(shù)的55%,是最多的,A正確;

假設(shè)獲獎(jiǎng)人數(shù)為,則一等獎(jiǎng)總金額為,二等獎(jiǎng)總金額為,

三等獎(jiǎng)總金額為,參與獎(jiǎng)總金額為,

所以三等獎(jiǎng)總金額是最高的,B錯(cuò)誤;

二等獎(jiǎng)獲獎(jiǎng)人數(shù)占獲獎(jiǎng)人數(shù)的10%,一等獎(jiǎng)獲獎(jiǎng)人數(shù)占獲獎(jiǎng)人數(shù)的5%,

即二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍,C正確;

由圖,可得獎(jiǎng)金平均數(shù)為,D正確;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知,、分別為的中點(diǎn),將沿折起,得到四棱錐,的中點(diǎn).

1)證明:平面

2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)討論上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx,

1)討論函數(shù)fx)的單調(diào)性;

2)證明:a1時(shí),fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則關(guān)于的方程)的實(shí)根個(gè)數(shù)(

A.B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈三中總務(wù)處的老師要購(gòu)買(mǎi)學(xué)校教學(xué)用的粉筆,并且有非常明確的判斷一盒粉筆是優(yōu)質(zhì)產(chǎn)品非優(yōu)質(zhì)產(chǎn)品的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據(jù)以往的經(jīng)驗(yàn),其中會(huì)有某些盒的粉筆為非優(yōu)質(zhì)產(chǎn)品,其余的都為優(yōu)質(zhì)產(chǎn)品.并且每箱含有0,12盒非優(yōu)質(zhì)產(chǎn)品粉筆的概率為0.7,0.20.1.為了購(gòu)買(mǎi)該品牌的粉筆,?倓(wù)主任設(shè)計(jì)了一種購(gòu)買(mǎi)的方案:欲買(mǎi)一箱粉筆,隨機(jī)查看該箱的4盒粉筆,如果沒(méi)有非優(yōu)質(zhì)產(chǎn)品,則購(gòu)買(mǎi),否則不購(gòu)買(mǎi).設(shè)買(mǎi)下所查看的一箱粉筆為事件箱中有件非優(yōu)質(zhì)產(chǎn)品為事件.

1)求,,;

2)隨機(jī)查看該品牌粉筆某一箱中的四盒,設(shè)為非優(yōu)質(zhì)產(chǎn)品的盒數(shù),求的分布列及期望;

3)若購(gòu)買(mǎi)100箱該品牌粉筆,如果按照主任所設(shè)計(jì)方案購(gòu)買(mǎi)的粉筆中,箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望比隨機(jī)購(gòu)買(mǎi)的箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望大10,則所設(shè)計(jì)的方案有效.討論該方案是否有效.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn),兩個(gè)焦點(diǎn)分別為.

1)求橢圓的方程;

2)過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn),若的內(nèi)切圓半徑為,求以為圓心且與直線(xiàn)相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,平面平面,,分別是棱的中點(diǎn).

1)求證:平面;

2)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 在新冠肺炎疫情的影響下,重慶市教委響應(yīng)停課不停教,停課不停學(xué)的號(hào)召進(jìn)行線(xiàn)上教學(xué),某校高三年級(jí)的甲、乙兩個(gè)班中,根據(jù)某次數(shù)學(xué)測(cè)試成績(jī)各選出5名學(xué)生參加數(shù)學(xué)建模競(jìng)賽,已知這次測(cè)試他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲班5名學(xué)生成績(jī)的平均分是83,乙班5名學(xué)生成績(jī)的中位數(shù)是86.

1)求出,的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績(jī)的方差、,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽,并說(shuō)明你的理由.

2)從成績(jī)?cè)?/span>85分及以上的學(xué)生中隨機(jī)抽取2名,用表示來(lái)自甲班的人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案