(2012•洛陽模擬)設(shè)F1,F(xiàn)2分別為雙曲線
x2
9
-
y2
16
=1
的左右焦點(diǎn),過F1引圓x2+y2=9的切線F1P交雙曲線的右支于點(diǎn)P,T為切點(diǎn),M為線段F1P的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|等于( 。
分析:由雙曲線方程,算出c=
a2+b2
=5,根據(jù)三角形中位線定理和圓的切線的性質(zhì),并結(jié)合雙曲線的定義可得|MO|-|MT|=4-a=1,得到本題答案.
解答:解:∵M(jìn)O是△PF1F2的中位線,
∴|MO|=
1
2
|PF2|,|MT|=
1
2
|PF1|-|F1T|,
根據(jù)雙曲線的方程得:
a=3,b=4,c=
a2+b2
=5,∴|OF1|=5,
∵PF1是圓x2+y2=9的切線,|OT|=3,
∴Rt△OTF1中,|FT|=
52-32
=4,
∴|MO|-|MT|=|=
1
2
|PF2|-(
1
2
|PF1|-|F1T|)=|F1T|-
1
2
(|PF1|-|PF2|)=4-a=1
故選:D
點(diǎn)評:本題給出雙曲線與圓的方程,求|MO|-|MT|的值,著重考查了雙曲線的簡單性質(zhì)、三角形中位線定理和直線與圓的位置關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽模擬)在△ABC中,角A、B、C所對的邊分別為a、b、c,
q
=(2a,1),
p
=(2b-c,cosC)且
p
q

求:
(I)求sinA的值;
(II)求三角函數(shù)式
-2cos2C
1+tanC
+1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽模擬)若a=
ln26
4
,b=ln2ln3,c=
ln2π
4
,則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽模擬)閱讀如圖的算法框圖,輸出的結(jié)果S的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽模擬)設(shè)變量x,y滿足約束條件:
x+y≥3
x-y≥-1
2x-y≤3
.則目標(biāo)函數(shù)z=2x+3y的最小值為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽模擬)已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=2
3
,AB=1,AC=2,∠BAC=60°,則球O的表面積為
( 。

查看答案和解析>>

同步練習(xí)冊答案