分析 (1)由已知得$\frac{{a}_{n+1}}{{2}^{n}}-\frac{{a}_{n}}{{2}^{n-1}}$=1,由此能證明數(shù)列{bn}是首項為1,公差為1的等差數(shù)列,并能求出數(shù)列{an}的通項公式.
(2)由${a}_{n}=n•{2}^{n-1}$,利用錯位相減法能求出Sn,由此能求出數(shù)列{an}的通項公式.
解答 (1)證明:∵在數(shù)列{an}中,a1=1,an+1=2an+2n ,
∴$\frac{{a}_{n+1}}{{2}^{n}}=\frac{{a}_{n}}{{2}^{n-1}}+1$,
∴$\frac{{a}_{n+1}}{{2}^{n}}-\frac{{a}_{n}}{{2}^{n-1}}$=1,
設bn=$\frac{{a}_{n}}{{2}^{n-1}}$,b1=$\frac{{a}_{1}}{{2}^{1-1}}$=1,
∴數(shù)列{bn}是首項為1,公差為1的等差數(shù)列,
∴bn=$\frac{{a}_{n}}{{2}^{n-1}}$=1+(n-1)×1=n,
∴an=n•2n-1.
(2)解:∵${a}_{n}=n•{2}^{n-1}$,
∴Sn=1+2•2+3•22+…+n•2n-1,①
2Sn=1•2+2•22+3•23+…+n•2n,②
①-②,得:-Sn=1+2+22+…+2n-1-n•2n
=$\frac{1×(1-{2}^{n})}{1-2}$-n•2n
=2n-1-n•2n,
∴Sn=(n-1)•2n+1.
∵a1=1,an+1=$\frac{1}{2}$Sn(n=1,2,3,…),
∴${a}_{n}=\frac{1}{2}{S}_{n-1}$=$\frac{1}{2}(n-2)•{2}^{n-1}+\frac{1}{2}$,n≥2.
∴an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2}(n-2)•{2}^{n-1}+\frac{1}{2},n≥2}\end{array}\right.$.
點評 本題考查等差數(shù)列的證明,考查數(shù)列的通項公式的求法,是中檔題,解題時要認真審題,注意構(gòu)造法和錯位相減法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x-2-2 | B. | y=x-2+2 | C. | y=(x-2)-2 | D. | y=(x+2)-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不超過19的非負實數(shù) | |
B. | 方程x2-64=0在實數(shù)范圍內(nèi)的解 | |
C. | $\sqrt{5}$的近似值的全體 | |
D. | 某育才中學2017級身高超過175cm的同學 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com