18.若函數(shù)f(x)=lnx+$\frac{a}{x}$在區(qū)間[1,e]上的最小值為$\frac{3}{2}$,則實(shí)數(shù)a的值為$\sqrt{e}$.

分析 對原函數(shù)求導(dǎo),然后分a<1,1≤a≤e,e<a,情況討論原函數(shù)在[1,e]上的單調(diào)性,并求得最小值,由最小值等于$\frac{3}{2}$求得a的值.

解答 解:由f(x)=lnx+$\frac{a}{x}$(x>0),得f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,
f′(x)=0則x=a,若a<1,則f(x)min=f(1)=a=$\frac{3}{2}$,不滿足題意;
若a>e,則f(x)min=f(e)=1+$\frac{a}{e}$=$\frac{3}{2}$,則a=$\frac{e}{2}$<e,不合題意;
若e≥a≥1,則f(x)min=f(a)=lna+1=$\frac{3}{2}$,則a=$\sqrt{e}$<e,滿足題意;
故答案為:$\sqrt{e}$.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,著重考查分類討論的數(shù)學(xué)思想方法,是中高檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐O-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=45°,OA⊥面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(1)證明:直線MN∥平面OCD;
(2)求異面直線AB與MD所成角的大;
(3)求點(diǎn)B到平面OCD的距離.
(4)求二面角O-CD-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C與圓D:(x-1)2+(y+2)2=4關(guān)于直線y=x對稱.
(Ⅰ) 求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+1與圓C交于A、B兩點(diǎn),且|AB|=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在調(diào)查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根據(jù)調(diào)查數(shù)據(jù)作出如下的列聯(lián)表:
色盲不色盲合計(jì)
38442480
6514520
合計(jì)449561000
利用獨(dú)立性檢驗(yàn)的方法來判斷色盲與性別有關(guān)?你所得到的結(jié)論在什么范圍內(nèi)有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a為實(shí)數(shù),函數(shù)f(x)=(x-a)2+|x-a|-a(a-1).
(Ⅰ)若f(0)≤1,求a的取值范圍;
(Ⅱ)當(dāng)a≥2時(shí),討論f(x)+$\frac{4}{x}$在區(qū)間(0,+∞)內(nèi)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圖中的三個(gè)正方形塊中,著色的正方形的個(gè)數(shù)依次構(gòu)成一個(gè)數(shù)列{an},根據(jù)著色的規(guī)律,則a4=585,數(shù)列{an}的通項(xiàng)公式an=$\frac{{8}^{n}-1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:函數(shù)f(x)=|4x-a|-ax(a>0)存在最小值;命題q:關(guān)于x的方程2x2-(2a-2)x+3a-7=0有實(shí)數(shù)根.則使“命題p∨?q為真,p∧?q為假”的一個(gè)必要不充分的條件是( 。
A.3≤a<5B.0<a<4C.4<a<5或0≤a≤3D.3<a<5或0≤a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知?jiǎng)訄A過定點(diǎn)F(0,1),且與定直線y=-1相切.
(Ⅰ)求動(dòng)圓圓心M所在曲線C的方程;
(Ⅱ)直線l經(jīng)過曲線C上的點(diǎn)P(x0,y0),且與曲線C在點(diǎn)P的切線垂直,l與曲線C的另一個(gè)交點(diǎn)為Q,當(dāng)x0=$\sqrt{2}$時(shí),求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列四個(gè)圖象中,不是函數(shù)圖象的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案