6.在調(diào)查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根據(jù)調(diào)查數(shù)據(jù)作出如下的列聯(lián)表:
色盲不色盲合計(jì)
38442480
6514520
合計(jì)449561000
利用獨(dú)立性檢驗(yàn)的方法來(lái)判斷色盲與性別有關(guān)?你所得到的結(jié)論在什么范圍內(nèi)有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.

分析 由已知中的2×2列聯(lián)表,求出χ2值,根據(jù)臨界值表,可得結(jié)論.

解答 (12分)解:根據(jù)題目所給的數(shù)據(jù)作出如下的列聯(lián)表:

色盲不色盲合計(jì)
38442480
6514520
合計(jì)449561 000
根據(jù)列聯(lián)表所給的數(shù)據(jù)可以有
a=38,b=442,c=6,d=514,a+b=480,c+d=520,
a+c=44,b+d=956,n=1 000,
由Χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
得到觀測(cè)值為Χ2=$\frac{{1,000×{{(38×514-6×442)}^2}}}{480×520×44×956}$≈27.1.
由27.1>6.635,所以我們有99%的把握認(rèn)為患色盲與性別有關(guān)系,這個(gè)結(jié)論只對(duì)所調(diào)查的480名男人和520名女人有效.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是獨(dú)立性檢驗(yàn)的應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{e}^{x}}{{e}^{m}}$-lnx.
(Ⅰ)設(shè)x=1是函數(shù)f(x)的極值點(diǎn),求m的值并討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m≤-2時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)圓C:x2+y2-2(t+3)x-2ty+t2+4t+8=0(t≠-1).
(1)當(dāng)t變化時(shí),圓心C是否在同一直線(xiàn)上?若在同一直線(xiàn)上,請(qǐng)寫(xiě)出該直線(xiàn)方程;若不在,請(qǐng)說(shuō)明理由;
(2)設(shè)直線(xiàn)l:x+y-3=0與圓C交于A,B,求弦AB的最大值;
(3)當(dāng)t變化時(shí),可得一系列圓,是否存在直線(xiàn)m與這些圓都相切?若存在,求出直線(xiàn)m的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=x3-3x2-9x(0<x<4)有(  )
A.極大值5,極小值-27B.極大值5,極小值-11
C.極大值5,無(wú)極小值D.極小值-27,無(wú)極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠BAC=90°,F(xiàn)為棱AA1上的動(dòng)點(diǎn),A1A=4,AB=AC=2.
(1)當(dāng)F為A1A的中點(diǎn),求直線(xiàn)BC與平面BFC1所成角的余弦值;
(2)當(dāng)$\frac{AF}{{F{A_1}}}$的值為多少時(shí),二面角B-FC1-C的大小是45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知(a+e)x-1-lnx≤0(e是自然對(duì)數(shù)的底數(shù))對(duì)任意x∈[$\frac{1}{e}$,2]都成立,則實(shí)數(shù)a的最大值為-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=lnx+$\frac{a}{x}$在區(qū)間[1,e]上的最小值為$\frac{3}{2}$,則實(shí)數(shù)a的值為$\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π
②若α,β均是第一象限的角,且α>β,則sinα>sinβ.
③函數(shù)f(x)=|sinx|是周期函數(shù)且周期是π.
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是單調(diào)遞減的.其中真命題的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)在△ABC中,已知a-b=4,a+c=2b,且最大角為120°,求△ABC的三邊長(zhǎng).
(2)在銳角三角形中,邊a、b是方程x2-2$\sqrt{3}$x+2=0的兩根,角A、B滿(mǎn)足2sin(A+B)-$\sqrt{3}$=0,求角C的度數(shù),邊c的長(zhǎng)度及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案