設(shè)集合D={平面向量},定義在D上的映射f,滿足對任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若||=||且、不共線,則(f()-f())•(+)=______;若A(1,2),B(3,6),C(4,8),且f()=,則λ=______.
【答案】分析:利用f(x)的定義求出f(),,利用向量的運(yùn)算律及向量的模的平方等于向量的平方求出;
利用向量的坐標(biāo)求法求出兩向量的坐標(biāo),利用f(x)的定義及已知條件列出方程求出λ.
解答:解:∵||=||且不共線,
∴(f()-f())•()=(λ)•(
=λ(||2-||2)=0;
,有=λ(1,2),,
∴λ=2.
故答案為0;2
點(diǎn)評:本題考查的新定義題,此題型近幾年高考中常出,要重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合D={平面向量},定義在D上的映射f,滿足對任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|a|=|b|且a、b不共線,則〔f(a)-f(b)〕•(a+b)=
 
;若A(1,2),B(3,6),C(4,8),且f
(BC
)=
AB
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合D={平面向量},定義在D上的映射f,滿足對任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|
a
|=|
b
|且
a
、
b
不共線,則(f(
a
)-f(
b
))•(
a
+
b
)=
 
;若A(1,2),B(3,6),C(4,8),且f(
BC
)=
AB
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《2.4-2.5 數(shù)量積、應(yīng)用舉例》2013年同步練習(xí)(解析版) 題型:解答題

設(shè)集合D={平面向量},定義在D上的映射f,滿足對任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若||=||且、不共線,則(f()-f())•(+)=______;若A(1,2),B(3,6),C(4,8),且f()=,則λ=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省青島市即墨市高三1月教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)集合D={平面向量},定義在D上的映射f,滿足對任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|a|=|b|且a、b不共線,則〔f(a)-f(b)〕•(a+b)=    ;若A(1,2),B(3,6),C(4,8),且f,則λ=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省青島市即墨市高三1月教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)集合D={平面向量},定義在D上的映射f,滿足對任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|a|=|b|且a、b不共線,則〔f(a)-f(b)〕•(a+b)=    ;若A(1,2),B(3,6),C(4,8),且f,則λ=   

查看答案和解析>>

同步練習(xí)冊答案