在矩形ABCD中,AD=2AB=2a,E是AD的中點,沿BE把△ABE折到.(1)求證:平面⊥平面BEDC;(2)求四棱錐的體積.

答案:
解析:

  解(1)取BE,CD的中點M,N,連結(jié)AM,,∵AD=2AB,E是AD的中點,∴AB=AE,于是AM⊥BE,即⊥BE,又.∵MN是直角梯形BCDE的中位線,∴CD⊥MN,∴CD⊥平面,從而⊥CD.于是⊥平面BCDE,,∴平面⊥平面BCDE.

  (2)∵AD=2a,AB=a,∴BC=2a,ED=a,CD=a,于是(DE+BC)×CD=,高


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對角線BD將BCD折起,使點C移到點C′,且C′在平面ABD的射影O恰好在AB上
(1)求證:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分別是邊AD、AB、BC、CD上的點,若AE=AF=CG=CH,問AE取何值時,四邊形EFGH的面積最大?并求最大的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:設(shè)計必修二數(shù)學北師版 北師版 題型:044

如圖,已知在矩形ABCD中,A(-4,4)、D(5,7),其對角線的交點E在第一象限內(nèi)且與y軸的距離為一個單位,動點P(x,y)沿矩形一邊BC運動,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-5-5,在矩形ABCD中,過A作對角線BD的垂線AP與BD交于P,過P作BC、CD的垂線PE、PF,分別與BC、CD交于E、F.

1-5-5

求證:AP3=BD·PE·PF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知在矩形ABCD中,||=.設(shè)=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步練習冊答案