A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析,X1和X2的分布列分別為

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個(gè)項(xiàng)目上各投資100萬(wàn)元,Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬(wàn)元投資A項(xiàng)目,100-x萬(wàn)元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤(rùn)的方差與投資B項(xiàng)目所得利潤(rùn)的方差的和.求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值.

(1)4   12    (2) x=75時(shí),f(x)=3為最小值

解析解:(1)由題設(shè)可知Y1和Y2的分布列分別為

Y1
5
10
P
0.8
0.2
 
Y2
2
8
12
P
0.2
0.5
0.3
E(Y1)=5×0.8+10×0.2=6,
V(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;
E(Y2)=2×0.2+8×0.5+12×0.3=8,
V(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.
(2)f(x)=V+V
2V(Y1)+2V(Y2)
[x2+3(100-x)2]
(4x2-600x+3×1002),
當(dāng)x==75時(shí),f(x)=3為最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個(gè)生物小組分別獨(dú)立開(kāi)展對(duì)該生物離開(kāi)恒溫箱的成活情況進(jìn)行研究,每次試驗(yàn)一個(gè)生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗(yàn)后生物成活,則稱該試驗(yàn)成功,如果生物不成活,則稱該次試驗(yàn)是失敗的.
(1)甲小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)如果乙小組成功了4次才停止試驗(yàn),求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進(jìn)行2次試驗(yàn),設(shè)試驗(yàn)成功的總次數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

箱子里有3雙不同的手套,隨機(jī)拿出2只,記事件A表示“拿出的手套配不成對(duì)”;事件B表示“拿出的都是同一只手上的手套”.
(1)請(qǐng)列出所有的基本事件;
(2)分別求事件A、事件B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

據(jù)IEC(國(guó)際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開(kāi)發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

假設(shè)投資A項(xiàng)目的資金為≥0)萬(wàn)元,投資B項(xiàng)目資金為≥0)萬(wàn)元,調(diào)研結(jié)果是:未來(lái)一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利的可能性為,虧損的可能性為;位于二類風(fēng)區(qū)的B項(xiàng)目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項(xiàng)目的利潤(rùn)分別為,試寫(xiě)出隨機(jī)變量的分布列和期望,;
(2)某公司計(jì)劃用不超過(guò)萬(wàn)元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投
資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利
潤(rùn)之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

拋擲紅、藍(lán)兩顆骰子,設(shè)事件A為“藍(lán)色骰子的點(diǎn)數(shù)為3或6”,事件B為“兩顆骰子的點(diǎn)數(shù)之和大于8”.
(1)求P(A),P(B),P(AB);
(2)當(dāng)已知藍(lán)色骰子的點(diǎn)數(shù)為3或6時(shí),求兩顆骰子的點(diǎn)數(shù)之和大于8的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察下面一組組合數(shù)等式:
;
;
;
…………
(1)由以上規(guī)律,請(qǐng)寫(xiě)出第個(gè)等式并證明;
(2)隨機(jī)變量,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某飲料公司對(duì)一名員工進(jìn)行測(cè)試以便確定其考評(píng)級(jí)別.公司準(zhǔn)備了兩種不同的飲料共5杯,其顏色完全相同,并且其中3杯為A飲料,另外2杯為B飲料,公司要求此員工一一品嘗后,從5杯飲料中選出3杯A飲料.若該員工3杯都選對(duì),則評(píng)為優(yōu)秀;若3杯選對(duì)2杯,則評(píng)為良好;否則評(píng)為合格.假設(shè)此人對(duì)A和B兩種飲料沒(méi)有鑒別能力.
(1)求此人被評(píng)為優(yōu)秀的概率;
(2)求此人被評(píng)為良好及以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

“拋階磚”是國(guó)外游樂(lè)場(chǎng)的典型游戲之一.參與者只須將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長(zhǎng)為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲但很少有人得到獎(jiǎng)品,請(qǐng)用所學(xué)的概率知識(shí)解釋這是為什么.

查看答案和解析>>

同步練習(xí)冊(cè)答案