以下有四個(gè)命題:
①一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>O(k∈N),則對(duì)于任意自然數(shù)n>k,都有an>0;
②一個(gè)等比數(shù)列{an}中,若存在ak<0,ak+1<O(k∈N),則對(duì)于任意n∈N,都有an<0;
③一個(gè)等差數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),則對(duì)于任意n∈N,都有an<O;
④一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,則對(duì)于任意n∈N,都有an.a(chǎn)n+1<0;
其中正確命題的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
【答案】分析:對(duì)四個(gè)選項(xiàng)逐個(gè)加以判別:根據(jù)等差數(shù)列的通項(xiàng)公式和它的性質(zhì),可得①是正確的而③是不正確的;根據(jù)等比數(shù)列的通項(xiàng)公式及其性質(zhì),可得②和④是正確的.由此不難得出正確的答案.
解答:解:對(duì)于①,等差數(shù)列{an}中,若存在ak+1>>O(k∈N),
說明數(shù)列的公差d>0,且第k項(xiàng)為正數(shù),說明從第k項(xiàng)往后各項(xiàng)均大于ak為正數(shù)
則對(duì)于任意自然數(shù)n>k,都有an>0,故①是正確的;
對(duì)于②,等比數(shù)列{an}中,若存在ak<0,ak+1<O(k∈N),
根據(jù)等比數(shù)列奇數(shù)項(xiàng)符號(hào)相同、偶數(shù)項(xiàng)符號(hào)也相同的規(guī)律,
知此等比數(shù)列的所有項(xiàng)均為負(fù)數(shù),對(duì)于任意n∈N,都有an<0,故②是正確的;
對(duì)于③,一個(gè)等差數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),
有可能它的前面有限項(xiàng)為正,而公差為負(fù),如:5,3,1,-1,-3,-5,…
所以結(jié)論:對(duì)于任意n∈N,都有an<O不成立,故③是不正確的;
對(duì)于④,等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,
說明這兩項(xiàng)一個(gè)為正數(shù),另一個(gè)為負(fù)數(shù),則它公比q<0
由此,對(duì)于任意n∈N,都有an.a(chǎn)n+1=an2q<0,故④是正確的;
故正確的命題是①②④
故選D
點(diǎn)評(píng):本題以等差數(shù)列和等比數(shù)列為例,考查了命題真假的判斷,屬于基礎(chǔ)題.熟練掌握等差、等比數(shù)列的通項(xiàng)與性質(zhì),是解決好本題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、以下四個(gè)命題:
①過一點(diǎn)有且僅有一個(gè)平面與已知直線垂直;
②若平面外兩點(diǎn)到平面的距離相等,則過這兩點(diǎn)的直線必平行于該平面;
③兩條相交直線在同一平面內(nèi)的射影必為相交直線;
④兩個(gè)互相垂直的平面,一個(gè)平面內(nèi)的任一直線必垂直于另一平面的無數(shù)條直線.
其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①4名同學(xué)分別報(bào)名參加學(xué)校組織的數(shù)學(xué)、物理、化學(xué)三個(gè)項(xiàng)目的競(jìng)賽,每人限報(bào)其中的一項(xiàng),不同報(bào)法的種數(shù)是43;
②4名同學(xué)分3張有座足球票,每人至多分l張,而且必須分完,那么不同分法的種數(shù)是C43
③從含有98件正品,2件次品的100件產(chǎn)品中任意抽取3件,抽取的這3件產(chǎn)品中至少有l(wèi)件次品的概率是
C
1
2
C
2
99
C
3
100

④在(1-x)2n+1(n∈N*)的二項(xiàng)展開式中,系數(shù)最大的項(xiàng)是第n+1項(xiàng),系數(shù)最小的項(xiàng)是第n+2項(xiàng).
其中真命題是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭一模)有以下四個(gè)命題:
①△ABC中,“A>B”是“sinA>sinB”的充要條件;
②若命題p:?x∈R,sinx≤1,則?p:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個(gè)函數(shù)y=x-1,y=x
1
2
,y=x
1
3
,y=x3,其中在(0,+∞)上是增函數(shù)的函數(shù)有3個(gè).
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①將一枚硬幣拋擲兩次,設(shè)事件A:“兩次都出現(xiàn)正面”,事件B:“兩次都出現(xiàn)反面”,則事件A與B是對(duì)立事件;
②在命題①中,事件A與B是互斥事件;
③在10件產(chǎn)品中有3件是次品,從中任取3件.事件A:“所取3件中最多有2件次品”,事件B:“所取3件中至少有2件次品”,則事件A與B是互斥事件;
④若事件A、B滿足P(A)+P(B)=1,則A,B是對(duì)立事件;
⑤若A,B是互斥事件,則
A
B
是必然事件;
則以上命題中假命題是
 
(寫出所有假命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1;
③某項(xiàng)測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2),P(ζ≤5)=0.81,則P(ζ≤-3)=0.19;
④對(duì)于兩個(gè)分類變量X與Y的隨機(jī)變量k2的觀測(cè)值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大. 
以上命題中其中真命題的個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案