精英家教網 > 高中數學 > 題目詳情

如圖,橢圓E:數學公式的右焦點F2與拋物線y2=8x的焦點重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點,與拋物線交于C、D兩點,且數學公式
(Ⅰ)求橢圓E的方程;
(Ⅱ)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求數學公式的最大值.

解:(Ⅰ)由條件可知橢圓的焦點坐標為(2,0),|CD|=8,,
可得:2a2=3b4,又a2=b2+4,則3b4-2b2-8=0,解得:b2=2,a2=4,
所以橢圓M的方程為
(2)方法1:設圓N:x2+(y-2)2=1的圓心為N,
==
從而求的最大值轉化為求的最大值.
因為P是橢圓M上的任意一點,設P(x0,y0),所以,即
因為點N(0,2),所以
因為,所以當y0=-1時,取得最大值12. 
所以的最大值為11.
方法2:設點E(x1,y1),F(x2,y2),P(x0,y0),因為E,F的中點坐標為(0,2),所以
所以=(x1-x0)(-x1-x0)+(y1-y0)(4-y1-y0
==.…(6分)
因為點E在圓N上,所以,即
因為點P在橢圓M上,所以,即
所以==
因為,所以當y0=-1時,

方法3:①若直線EF的斜率存在,設EF的方程為y=kx+2,
,解得
因為P是橢圓M上的任一點,設點P(x0,y0),所以,即
所以,
所以
因為,所以當y0=-1時,取得最大值11.
②若直線EF的斜率不存在,此時EF的方程為x=0,
,解得y=1或y=3.
不妨設,E(0,3),F(0,1). 因為P是橢圓M上的任一點,設點P(x0,y0),
所以,即.所以,
所以
因為,所以當y0=-1時,取得最大值11.
綜上可知,的最大值為11.


分析:(Ⅰ)由條件可知橢圓的焦點坐標為(2,0),|CD|=8,,利用可得:2a2=3b4,結合a2=b2+4,即可求得橢圓M的方程;
(2)方法1:設圓N:x2+(y-2)2=1的圓心為N,利用向量的運算,表示出,從而求的最大值轉化為求的最大值,用坐標表示出,即可求得的最大值;
方法2:設點E(x1,y1),F(x2,y2),P(x0,y0),用坐標表示出,利用配方法,即可求得結論;
方法3:分類討論:直線EF的斜率存在與不垂直,EF的方程與圓的方程聯立,用坐標表示出,利用配方法,即可求得結論.
點評:本題考查橢圓的標準方程,考查向量知識的運用,考查直線與圓的位置關系,正確表示是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省湛江二中高三(上)第一次月考數學試卷(理科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數學 來源:2010年內蒙古赤峰市高三統(tǒng)考數學試卷(文科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

同步練習冊答案