湖北宜昌“三峽人家”風(fēng)景區(qū)為提高經(jīng)濟(jì)效益,現(xiàn)對(duì)某一景點(diǎn)進(jìn)行改造升級(jí),從而擴(kuò)大內(nèi)需,提高旅游增加值,經(jīng)過(guò)市場(chǎng)調(diào)查,旅游增加值萬(wàn)元與投入萬(wàn)元之間滿足:,為常數(shù),當(dāng)萬(wàn)元時(shí),萬(wàn)元;當(dāng)萬(wàn)元時(shí),萬(wàn)元.(參考數(shù)據(jù):,,
(Ⅰ)求的解析式;
(Ⅱ)求該景點(diǎn)改造升級(jí)后旅游利潤(rùn)的最大值.(利潤(rùn)=旅游收入-投入)

(Ⅰ);(Ⅱ)24.4萬(wàn)元.

解析試題分析:(Ⅰ)由萬(wàn)元時(shí),萬(wàn)元;萬(wàn)元時(shí),萬(wàn)元代入已知函數(shù),解方程組;(Ⅱ)由導(dǎo)數(shù)法求極值,再求最值.
試題解析:(Ⅰ)由條件,
解得,                              (4分)
               (6分)
(Ⅱ)由
,              (9分)
(舍)或
當(dāng)時(shí),,
因此在(10,50)上是增函數(shù);
當(dāng)時(shí),,
因此在(50,+∞)上是減函數(shù),
的極大值點(diǎn).
即該景點(diǎn)改造升級(jí)后旅游利潤(rùn))的最大值為萬(wàn)元.    (12分)
考點(diǎn):用導(dǎo)數(shù)法解決實(shí)際運(yùn)用問(wèn)題.函數(shù)的極值、最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù) 
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令)其圖象上任意一點(diǎn)處切線的斜率 恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對(duì)所有的都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,且在點(diǎn)(1,)處的切線方程為
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若對(duì)一切恒成立,求的最大值;
(2)設(shè),且是曲線上任意兩點(diǎn),若對(duì)任意,直線的斜率恒大于常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線是
(Ⅰ)求的值;
(Ⅱ)若上單調(diào)遞增,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知函數(shù).
(1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)設(shè)函數(shù),
(1)求的周期和對(duì)稱中心;
(2)求上值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案