【題目】函數(shù)y= 的定義域?yàn)椋?/span> )
A.(﹣∞,2)
B.(2,+∞)
C.(2,3)∪(3,+∞)
D.(2,4)∪(4,+∞)
【答案】C
【解析】解:要使原函數(shù)有意義,則 ,
解得:2<x<3,或x>3
所以原函數(shù)的定義域?yàn)椋?,3)∪(3,+∞).
故選C.
【考點(diǎn)精析】本題主要考查了函數(shù)的定義域及其求法的相關(guān)知識點(diǎn),需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實(shí)數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足 = +μ (1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則4a+b的最小值為 ( )
A.5
B.4
C.9
D.5+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為19,則輸出N的值為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】非空數(shù)集A如果滿足:①0A;②若對x∈A,有 ∈A,則稱A是“互倒集”.給出以下數(shù)集:
①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y= }.
其中“互倒集”的個數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要制作一個容積為2π m3的圓柱形儲油罐(有蓋),為使所用的材料最省,它的底面半徑與高分別為 ( )
A. 0.5 m,1 m B. 1 m,1 m
C. 1 m,2 m D. 2 m,2 m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且滿足csinA=acosC,
(1)求角C的大;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時角A,B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x+ )+sin(x﹣ )+acosx+b,(a,b∈R)且均為常數(shù)).
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[﹣ ,0]上單調(diào)遞增,且恰好能夠取到f(x)的最小值2,試求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=8x的準(zhǔn)線與雙曲線 ﹣ =1(a>0,b>0)相交于A、B兩點(diǎn),雙曲線的一條漸近線方程是y= x,點(diǎn)F是拋物線的焦點(diǎn),且△FAB是等邊三角形,則該雙曲線的標(biāo)準(zhǔn)方程是( )
A.﹣ =1
B.﹣ =1
C.﹣ =1
D.﹣ =1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com