直線與圓交于、兩點(diǎn),記△的面積為(其中為坐標(biāo)原點(diǎn)).
(1)當(dāng),時(shí),求的最大值;
(2)當(dāng),時(shí),求實(shí)數(shù)的值;
(1)2 (2),,,
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用以及三角形面積公式的求解,弦長公式的運(yùn)用。
(1)當(dāng)時(shí),直線方程為,
設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
由,解得,從而得到AB的長,表示面積。
(2)設(shè)圓心到直線的距離為,則.
因?yàn)閳A的半徑為,表示出弦長,再得到面積。
解:(1)當(dāng)時(shí),直線方程為,
設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
由,解得,
所以.
所以
.
當(dāng)且僅當(dāng),即時(shí),取得最大值.
(2)設(shè)圓心到直線的距離為,則.
因?yàn)閳A的半徑為,
所以.
于是,
即,解得.
故實(shí)數(shù)的值為,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第二次(3月)周測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
直線與圓交于、兩點(diǎn),且、關(guān)于直線對稱,則弦的長為
A. 2 B.3 C. 4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆湖南省高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分10分)直線與圓交于、兩點(diǎn),記△的面積為(其中為坐標(biāo)原點(diǎn)).
(1)當(dāng),時(shí),求的最大值;
(2)當(dāng),時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分14分)
已知點(diǎn)及圓:.
(Ⅰ)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(Ⅱ)設(shè)過直線與圓交于、兩點(diǎn),當(dāng)時(shí),求以為直徑的圓的方程;
(Ⅲ)設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線 垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省高二12月月考文科數(shù)學(xué) 題型:解答題
((本小題滿分12分)
已知點(diǎn)及圓:.
(1)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(2)設(shè)過點(diǎn)P的直線與圓交于、兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;
(3)設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題
已知點(diǎn)及圓:.
(Ⅰ)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線與圓交于、兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;
(Ⅲ)設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com