A. | (1,$\sqrt{3}$) | B. | (1,2) | C. | ($\sqrt{3}$,+∞) | D. | (2,+∞) |
分析 先求出切線的斜率,再利用圓(x-1)2+y2=$\frac{3}{4}$的一條切線y=kx與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有兩個交點,可得$\frac{a}$>$\sqrt{3}$,即可求出雙曲線C的離心率的取值范圍.
解答 解:由題意,圓心到直線的距離d=$\frac{|k|}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{3}}{2}$,∴k=±$\sqrt{3}$,
∵圓(x-1)2+y2=$\frac{3}{4}$的一條切線y=kx與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有兩個交點,
∴$\frac{a}$>$\sqrt{3}$,
∴1+$\frac{^{2}}{{a}^{2}}$>4,
∴e>2,
故選:D.
點評 本題考查直線與圓的位置關系,考查雙曲線的方程與性質,考查學生的計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若a+b≠1,則a2+b2<$\frac{1}{2}$ | B. | 若a+b=1,則a2+b2<$\frac{1}{2}$ | ||
C. | 若a2+b2<$\frac{1}{2}$,則a+b≠1 | D. | 若a2+b2≥$\frac{1}{2}$,則a+b=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com