分析:設(shè)出三向量的模分別為a,b及c,根據(jù)周長為6列出關(guān)于a+b+c=6,再由a,b及c成等邊數(shù)列,根據(jù)等邊數(shù)列的性質(zhì)得到b
2=ac,然后由余弦定理表示出cosB,把b
2=ac代入,并利用基本不等式求出cosB的最小值,根據(jù)余弦函數(shù)的圖象得到B的范圍,同時由b=
及基本不等式列出關(guān)于b的不等式,求出不等式的解集得到b的范圍,根據(jù)三角形的兩邊之差小于第三邊列出不等式,由三角形的周長及b
2=ac,得到關(guān)于b的一元二次不等式,求出不等式的解集可得b的范圍,
(1)由a,b及sinB,根據(jù)三角形的面積公式表示出三角形ABC的面積,把ac化為b
2后,根據(jù)b的最大值及B度數(shù)的最大值,得到S的最大值即可;
(2)根據(jù)平面向量的數(shù)量積運算法則表示出
•得到一個關(guān)系式,利用余弦定理表示出cosB后,代入表示出的關(guān)系式中,配方并根據(jù)周長及b
2=ac化為關(guān)于b的關(guān)系式,再配方得到關(guān)于b的二次函數(shù),由自變量b的范圍,根據(jù)二次函數(shù)的圖象與性質(zhì)得到函數(shù)值的范圍,即為
•的取值范圍.