【題目】下列說法中錯(cuò)誤的個(gè)數(shù)為(
①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②若一個(gè)命題的否命題為假,則它本身一定為真;
的充要條件;
與a=b是等價(jià)的;
⑤“x≠3”是“|x|≠3”成立的充分條件.
A.2
B.3
C.4
D.5

【答案】C
【解析】解:①一個(gè)命題的逆命題和它的否命題真假性相同.①正確
②一個(gè)命題的否命題和他它本身真假性不一定相同.②錯(cuò)誤
③由不等式的基本性質(zhì),若 充分性成立,反之,取x=1,y=3,滿足 ,但推不出 ,必要性不成立.③錯(cuò)誤
a=b,反之易知不成立.④錯(cuò)誤
⑤取x=﹣3,滿足x≠3,但推不出“|x|≠3 錯(cuò)誤⑤
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (其中a,b為常數(shù))的圖象經(jīng)過(1,2),(2, )兩點(diǎn).
(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三棱柱的底面邊長為2 是側(cè)棱的中點(diǎn).

1證明:平面平面;

2若平面與平面所成銳角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=loga(x﹣3a)(a>0且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)
Q(x﹣2a,﹣y)是函數(shù)y=g(x)圖象上的點(diǎn).
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當(dāng)x∈[a+2,a+3]時(shí),恒有|f(x)﹣g(x)|≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形, 的中點(diǎn), 平面的中點(diǎn).

(1)證明: 平面;

(2)證明: 平面

(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為a的正方體ABCD﹣A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),EF與BD交于點(diǎn)G,M為棱BB1上一點(diǎn).
(1)證明:EF∥平面 A1C1D;
(2)當(dāng)B1M:MB的值為多少時(shí),D1M⊥平面 EFB1 , 證明之;
(3)求點(diǎn)D到平面 EFB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)=
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)若f(|2x﹣1|)+k ﹣3k=0有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓(x+2)2+y2=5關(guān)于直線x﹣y+1=0對(duì)稱的圓的方程為(
A.(x﹣2)2+y2=5
B.x2+(y﹣2)2=5
C.(x﹣1)2+(y﹣1)2=5
D.(x+1)2+(y+1)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)平面圖形的斜二測(cè)畫法的直觀圖是一個(gè)邊長為a的正方形,則原平面圖形的面積為(
A. a2
B.a2
C.2 a2
D.2a2

查看答案和解析>>

同步練習(xí)冊(cè)答案