|
(1) |
過點A的切線存在,即點A在圓外或圓上,∴1+a2≥4,∴ |
(2) |
解法一:如圖,設(shè)MN與AC交于D點 ∵MN=,∴DM=. 又MC=2,∴CD= ∴……………………………6分 ∵AC=,∴OC=2,AM=1…………………………………8分 MN是以A為圓心,半徑AM=1的圓與圓C的公共弦,圓A的方程為,圓C的方程的方程為或,∴MN所在直線方程為即或即………………………10分 因此,MN所在直線方程為………………………12分 解法二:同法一,得OC=2,AM=1,知圓C與軸切于原點,弦MN所在直線即為直線OM. ∵………………………………10分 ∴MN所在直線方程為(圓C在軸上方)或(圓C在軸下方)……………………………………12分 解法三:同法一,得OC=2,∴ 當(dāng)=2時,圓∴N為(0,0) ∵∴ ∴直線MN得方程為,即…………………………………10分 當(dāng)時,圓∴N為(0,0) ∵∴ ∴直線MN得方程為或………………………12分 |
科目:高中數(shù)學(xué) 來源:山西省實驗中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;
(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經(jīng)過點D.
(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com