已知雙曲線(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為    
【答案】分析:先設(shè)P點(diǎn)坐標(biāo),進(jìn)而根據(jù)雙曲線的定義可知丨PF1丨=ex+a,丨PF2丨=ex-a,根據(jù)|PF1|=4|PF2|求得e和a,x的關(guān)系式,進(jìn)而根據(jù)x的范圍確定e的范圍,求得e的最小值.
解答:解:設(shè)P(x,y),由焦半徑得丨PF1丨=ex+a,丨PF2丨=ex-a,
∴ex+a=4(ex-a),化簡(jiǎn)得e=
∵p在雙曲線的右支上,
∴x≥a,所以e≤,即e的最大值是
故答案為:
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了雙曲線的定義,靈活利用了焦半徑與離心率之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為(    )

A.30°             B.45°              C.60°               D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為(    )

A.30°                B.45°                   C.60°                  D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程是y=x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為(  )

(A) -=1 (B) -=1

(C) -=1 (D) -=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三聯(lián)合考試數(shù)學(xué)文卷 題型:填空題

已知雙曲線a>0,b>0)的左右焦點(diǎn)分別為F1 F2 ,P 是雙曲線上的一點(diǎn),且P F1⊥P F2, 的面積為2 ab,則雙曲線的離心率 e=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆吉林省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:選擇題

已知雙曲線(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為(    )

(A)    (B)     (C) (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案