17.設(shè)有兩個命題,命題P:不等式x2-(a+1)x+1≤0的解集是∅;命題q:函數(shù)f(x)=(a+1)x在定義域中是增函數(shù),
(1)若p∧q為真命題時,求a的取值范圍;
(2)若p∨q為真命題時,求a的取值范圍.

分析 由題意可得p,q真時,a的范圍,分別由p真q假,p假q真由集合的運算可得.

解答 解:∵命題p:不等式x2-(a-1)x+1≤0的解集是∅,
∴△=(a-1)2-4<0,解得-1<a<3,
∵命題q:函數(shù)f(x)=(a+1)x在定義域內(nèi)是增函數(shù).
∴a+1>1,解得a>0
(1)若p∧q為真命題時,則$\left\{\begin{array}{l}{-1<a<3}\\{a>0}\end{array}\right.$,解得:0<a<3;
(2)若p∨q為真命題時,則-1<a<3或a>0,即:a>-1.

點評 本題考查復(fù)合命題的真假,涉及一元二次不等式的解法和指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin2x+cos2x,將f(x)的圖象上各點的橫坐標(biāo)縮短為原來的$\frac{1}{2}$(縱坐標(biāo)不變),再將所得的圖象向右平移$\frac{π}{4}$個單位,得到的函數(shù)y=g(x)的圖象.則函數(shù)y=g(x)的圖象的對稱中心不可能是( 。
A.(-$\frac{3π}{16}$,0)B.($\frac{3π}{16}$,0)C.($\frac{7π}{16}$,0)D.($\frac{15π}{16}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知R是實數(shù)集,集合P={m∈R|mx2+4mx-4<0對?x∈R都成立},Q={x|y=ln(x2+2x)},則(∁RP)∩(∁RQ)=( 。
A.{x|-2≤x≤-1}B.{x|-2≤x≤-1或x=0}C.{x|-2≤x<-1}D.{x|-2≤x<-1或x=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}(a-3)x+2,x≤1\\{x^{1-a}},x>1\end{array}\right.$是(-∞,+∞)上的減函數(shù),那么a的取值范圍是( 。
A.(1,3)B.(1,2]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=$\left\{\begin{array}{l}{1,(x∈Q)}\\{0,(x∈{∁}_{R}Q)}\end{array}\right.$,則f(e)=( 。ㄆ渲衑是自然對數(shù)的底數(shù))
A.0B.1C.0或1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an+2n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.等差數(shù)列{an}中,a3=2,a11=2a5
(I)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{n{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.記關(guān)于x的不等式$\frac{x-a}{x+1}$<0的解集為P,不等式|x-1|≤1的解集為Q.
(1)若a=2,求P;
(2)若x∈Q是x∈P的充分條件,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={1,2,4,5},集合B=(1,3,5},則A∪B=( 。
A.{1,5}B.{1,2,3,4,5}C.{2,4}D.

查看答案和解析>>

同步練習(xí)冊答案