動點M在曲線x2+y2=1上移動,M和定點B(3,1)連線的中點為P,則P點的軌跡方程為:______.
設(shè)P點坐標是(x,y),u坐標是(u,n),則有:
mx=3+u,my=0+n
所以u=mx-3,n=my
又u在圓上,則有:um+nm=v.
即P方程是:(mx-3)m+4ym=v.
故答案為(mx-3)m+4ym=v.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

討論兩圓:的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

O1x2+y2-4x-6y+12=0與圓O2x2+y2-8x-6y+16=0的位置關(guān)系是(  )
A.相交B.外離C.內(nèi)含D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

判斷每個圖下面的方程哪個是圖中曲線的方程( 。
A.
x2+y2=1
B.
x2-y2=0
C.
y=|x|
D.
lgx+lgy=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓O′:(x-1)2+y2=36,點A(-1,0),M是圓上任意一點,線段AM的中垂線l和直線O′M相交于點Q,則點Q的軌跡方程為(  )
A.
x2
9
-
y2
8
=1
B.
x2
8
+
y2
9
=1
C.
x2
9
+
y2
8
=1
D.
x2
8
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知曲線x2+y2-2ax+2(a-2)y+2=0,(其中a∈R),當a=1時,曲線表示的軌跡是______.當a∈R,且a≠1時,上述曲線系恒過定點______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)在平面直角坐標系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于-
1
3
.求動點P的軌跡方程.
(2)
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為2,原點到直線AB的距離為
3
2
,其中A(0,-b)、B(a,0)求該雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三點A(0,4)、B(0,-4)、C(7,-3),△ABC外接圓為圓M(圓心M).
(1)求圓M的方程;
(2)若N(-7,0),R在圓M上運動,平面上一動點P滿足
RP
=4
PN
,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面上動點P到點F(1,0)的距離等于它到直線x=-1的距離.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)過點M(4,0)的直線與點P的軌跡交于A,B兩點,求
OA
OB
的值.

查看答案和解析>>

同步練習冊答案