【題目】2019年底,武漢發(fā)生新型冠狀病毒肺炎疫情,國(guó)家衛(wèi)健委緊急部署,從多省調(diào)派醫(yī)務(wù)工作者前去支援,正值農(nóng)歷春節(jié)舉家團(tuán)圓之際,他們成為最美逆行者.武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者疑似的新冠肺炎患者無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等四類人員,強(qiáng)化網(wǎng)格化管理,不落一戶不漏一人.若在排查期間,某小區(qū)有5人被確認(rèn)為確診患者的密切接觸者,現(xiàn)醫(yī)護(hù)人員要對(duì)這5人隨機(jī)進(jìn)行逐一核糖核酸檢測(cè),只要出現(xiàn)一例陽性,則將該小區(qū)確定為感染高危小區(qū).假設(shè)每人被確診的概率均為且相互獨(dú)立,若當(dāng)時(shí),至少檢測(cè)了4人該小區(qū)被確定為感染高危小區(qū)的概率取得最大值,則____

【答案】

【解析】

根據(jù)題意求出檢測(cè)前3人沒有確診第4人確診或者前4人沒有確診第5人確診的概率,利用導(dǎo)數(shù)法,求出所求概率的最大值.

由題意知,至少檢測(cè)了4人該小區(qū)被確定為感染高危小區(qū)的概率

,,

,解得,故上單調(diào)遞增,

上單調(diào)遞減,故當(dāng)時(shí),取得最大值.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的離心率為,點(diǎn)Ma0),N0,b),O0,0),且△OMN的面積為1

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)A,Bx軸上不同的兩點(diǎn),點(diǎn)A(異于坐標(biāo)原點(diǎn))在橢圓C內(nèi),點(diǎn)B在橢圓C外.若過點(diǎn)B作斜率不為0的直線與C相交于P,Q兩點(diǎn),且滿足∠PAB+QAB180°.證明:點(diǎn)AB的橫坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,.為鄰邊作平行四邊形,連接.

1)求證:平面

2)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,棱的中點(diǎn)為,若光線從點(diǎn)出發(fā),依次經(jīng)三個(gè)側(cè)面,,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為12,交于點(diǎn),將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與橢圓相交于點(diǎn)M0,1),N0-1),且橢圓的離心率為.

1)求的值和橢圓C的方程;

2)過點(diǎn)M的直線交圓O和橢圓C分別于A,B兩點(diǎn).

①若,求直線的方程;

②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為,且與短軸兩端點(diǎn)的連線相互垂直.

1)求橢圓的方程;

2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)是橢圓的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.

1)求拋物線的方程;

2)已知?jiǎng)又本過點(diǎn),交拋物線,兩點(diǎn),坐標(biāo)原點(diǎn)的中點(diǎn),求證;

3)在(2)的條件下,是否存在垂直于軸的直線被以為直徑的圓所截得的弦長(zhǎng)恒為定值?如果存在,求出的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案