精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,且函數奇函數而非偶函數.

1)寫出的單調性(不必證明);

2)當時,的取值范圍恰為,求的值;

3)設是否存在實數使得函數有零點?若存在,求出實數的值,若不存在,請說明理由.

【答案】1)當,函數單調遞增,當,函數單調遞減;(2;(3.

【解析】

1)根據奇偶性求出,即可分析函數的單調性;

2)根據函數單調性,結合值域分析參數的取值;

3)利用換元法和分離參數,結合二次函數的值域問題求解.

1)由題:函數,且函數奇函數而非偶函數.

必有,可得:,

,解得-2

時,,滿足題意;

時,,不滿足題意;

得函數定義域,

所以

,函數單調遞增,當,函數單調遞減;

2)由(1,

,所以,

,=1,所以

時,,所以

由(1)函數單調遞增,

時,的取值范圍恰為,必有,與題矛盾不合題意;

時,,此時單調遞減,

所以當時,的取值范圍恰為,

由題:,解得:

所以當時,的取值范圍恰為,

;

3,

存在實數使得函數有零點,

有零點,

問題轉化為:有實數根,

顯然不成立;

所以,方程變形為有實數根,

看成函數的值域問題,

根據二次函數性質可得:,

所以實數m的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數據進行流行病學統(tǒng)計分析,某地研究機構針對該地實際情況,根據該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關數據:

1)請將列聯表填寫完整,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為有武漢旅行史與有確診病例接觸史有關系?

有接觸史

無接觸史

總計

有武漢旅行史

4

無武漢旅行史

10

總計

25

45

2)已知在無武漢旅行史的10名患者中,有2名無癥狀感染者.現在從無武漢旅行史的10名患者中,選出2名進行病例研究,記選出無癥狀感染者的人數為,求的分布列以及數學期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數上的最大值為,.

1)若點的圖象上,求函數圖象的對稱中心;

2)將函數的圖象向右平移個單位,再將所得的圖象縱坐標不變,橫坐標縮小到原來的,得函數的圖象,若上為增函數,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點.

1)求橢圓的方程;

2)直線與橢圓相交于,兩點,點滿足,點,若直線斜率為,求面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若用“五點法”在給定的坐標系中,畫出函數[0,π]上的圖象.

(2)若偶函數,求

(3)在(2)的前提下,將函數的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數的圖象,求的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對兩個變量yx進行回歸分析,則下列說法中不正確的是(

A.由樣本數據得到的回歸方程必過樣本點的中心.

B.殘差平方和越小的模型,擬合的效果越好.

C.用相關指數來刻畫回歸效果,的值越小,說明模型的擬合效果越好.

D.回歸分析是對具有相關關系的兩個變量進行統(tǒng)計分析的一種常用方法.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20191216日,公安部聯合阿里巴巴推出的“錢盾反詐機器人”正式上線,當普通民眾接到電信網絡詐騙電話,公安部錢盾反詐預警系統(tǒng)預警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調查民眾對這一信息的了解程度,從5000多參與調查者中隨機抽取200個樣本進行統(tǒng)計,得到如下數據:男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40.

1)完成下列列聯表,問:能否在犯錯誤的概率不超過0.01的前提下,認為200個參與調查者是否了解這一信息與性別有關?

了解

不了解

合計

男性

女性

合計

2)該自媒體對200個樣本中了解這一信息的調查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,其中,.

(1)若為定值,求的最大值;

(2)求證:對任意,有 ;

(3)若,,求證:對任意,直線與曲線有唯一公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題表示雙曲線,命題表示橢圓.

1)若命題p與命題q都為真命題,則pq的什么條件?

2)若為假命題,且為真命題,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案