13.已知集合P=(-∞,0]∪(3,+∞),Q={0,1,2,3},則(∁RP)∩Q=( 。
A.{0,1}B.{0,1,2}C.{1,2,3}D.{x|0≤x<3}

分析 根據(jù)補集與交集的定義,寫出對應(yīng)的結(jié)果即可.

解答 解:集合P=(-∞,0]∪(3,+∞),Q={0,1,2,3},
則∁RP=(0,3],
所以(∁RP)∩Q={1,2,3}.
故選:C.

點評 本題考查了集合的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.用秦九韶算法求多項式f(x)=x6-5x5+6x4-3x3+1.8x2+0.35x+2,在x=-1的值時,v2的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),直線l:x+y-2=0,F(xiàn)1,F(xiàn)2為雙曲線Γ的兩個焦點,l與雙曲線Γ的一條漸近線平行且過其中一個焦點.
(1)求雙曲線Γ的方程;
(2)設(shè)Γ與l的交點為P,求∠F1PF2的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若復(fù)數(shù)z滿足z•i=1+i(i是虛數(shù)單位),則z的共軛復(fù)數(shù)是1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若O為△ABC所在平面內(nèi)任一點,且滿足($\overrightarrow{OB}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)=0,則△ABC的形狀為( 。
A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
(1)已知等比數(shù)列{an},則“數(shù)列{an}單調(diào)遞增”是“數(shù)列{an}的公比q>1”的充分不必要條件;
(2)二項式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展開式按一定次序排列,則無理項互不相鄰的概率是$\frac{1}{5}$;
(3)已知$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$,則$S=\frac{π}{16}$;
(4)為了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(x+1)lnx-ax+2.
(1)當a=1時,求在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上具有單調(diào)性,求實數(shù)a的取值范圍;
(3)求證:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<\frac{1}{2}ln(n+1)$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平面內(nèi)的三個向量,其中$\overrightarrow{a}$=(2,1)
(1)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐標;
(2)若|$\overrightarrow$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$\frac{x^2}{a^2}+\frac{y^2}{9}=1(a>3)$的兩個焦點為F1、F2,且|F1F2|=8,弦AB過點F1,則△ABF2的周長為( 。
A.10B.20C.2D.4

查看答案和解析>>

同步練習(xí)冊答案