分析 (1)依題意,雙曲線的漸近線方程為y=±x,焦點(diǎn)坐標(biāo)為F1(-2,0),F(xiàn)2(2,0),即可求雙曲線Γ的方程;
(2)設(shè)Γ與l的交點(diǎn)為P,求出P的坐標(biāo),利用夾角公式,即可求∠F1PF2的角平分線所在直線的方程.
解答 解:(1)依題意,雙曲線的漸近線方程為y=±x,焦點(diǎn)坐標(biāo)為F1(-2,0),F(xiàn)2(2,0),
∴雙曲線方程為x2-y2=2;
(2)$\left\{\begin{array}{l}{x^2}-{y^2}=2\\ x+y-2=0\end{array}\right.⇒P(\frac{3}{2},\frac{1}{2})$,顯然∠F1PF2的角平分線所在直線斜率k存在,且k>0,${k_{P{F_1}}}=\frac{1}{7}$,${k_{P{F_2}}}=-1$,于是$|\frac{{{k_{P{F_1}}}-k}}{{1+{k_{P{F_1}}}k}}|=|\frac{{{k_{P{F_2}}}-k}}{{1+{k_{P{F_2}}}k}}|⇒k=3$.∴$y-\frac{1}{2}=3(x-\frac{3}{2})⇒3x-y-4=0$為所求.
點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查直線的夾角公式的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0⊆A | B. | {0}⊆A | C. | ∅∈A | D. | {0}∈A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0,1,2} | C. | {1,2,3} | D. | {x|0≤x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com